Regression Modeling Strategies 4 - Linear
Mixed Models

Analyzing Correlated Data Structures in Sports Science

Linear mixed models (LMMs) stand as a versatile and robust statistical frame-
work extensively employed in sports science to delve into complex data structures
and uncover nuanced relationships among variables. In the realm of sports re-
search, LMMSs serve as a cornerstone for analyzing longitudinal or repeated mea-
sures data, accounting for both fixed effects—such as player performance or train-
ing interventions—and random effects, which encapsulate individual variability or
team-specific characteristics. This modeling approach proves particularly adept
at handling data with hierarchical or clustered structures, where observations are
nested within players, teams, or seasons. Within the sporting domain, LMMs find
application in various contexts, including performance analysis, injury prevention,
talent identification, and training optimization. For instance, in assessing the ef-
fectiveness of training interventions over time, LMMs allow researchers to discern
not only the overall impact of a training regimen but also how individual athletes
respond differently to the same intervention. Moreover, LMMs enable the explo-
ration of within-subject variability and the identification of factors contributing to
fluctuations in performance or injury occurrence across different phases of a season
or competition cycle.

@ Keywords

Mixed models, multilevel models, fixed effects, random effects, repeated measures, hier-
archical data, variance components.
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1 Lesson’s Level

The level of this lesson is categorized as SILVER.




@ Lesson’s Main Idea

¢ Understanding the importance of correlated data structures and the assumption of
independence.

o Constructing linear mixed models with different random effects (e.g., random in-
tercepts, random slopes, and combinations).

o Using fit metrics, such as BIC and AIC, to build a final model.

e Interpreting model parameters, including fixed effects and variance components,
from a linear mixed model.

1 Dataset Used In This Lesson

In this lesson, we use the GovRec dataset from the speedsR package, an R data package
specifically designed for the SPEEDS project. This package provides a collection of
sports-specific datasets, streamlining access for analysis and research in the sports science
context.

Introduction: Linear Mixed Models

Why Linear Mixed Models?

In the previous lessons, we explored regression models that did not violate the assumption of

Independence.

@ Reminder: Independence

The assumption of independence refers to the assumption that the occurrence or outcome
of one event is not influenced by the occurrence or outcome of another event. For example,
if Team A is playing against Team B in one match and Team X is playing against Team
Y in another match, the assumption of independence implies that the result of the Team
A vs. Team B match does not influence the result of the Team X vs. Team Y match.
Whether Team A wins or loses does not affect the likelihood of Team X winning or losing
their match. Each match’s outcome is independent of the other.

Quite often, especially in sport and exercise science, you will encounter situations that violate
the assumption of independence. Unfortunately, if we ignore this assumption (and just use our
regular linear regression techniques), our estimates may be completely biased and incorrect.

This is where the Linear Mixed Model can help.

Consider a data set that consists of two variables for 40 different athletes:



e Match performance (a continuous variable where higher values represent better perfor-
mance on the day of an important match)

e Days without training (the number of days the athlete has missed / skipped training
before said match)

Click on the tabs below to explore this scenario and see what happens when Independence is
ignored.

If we were to plot this data, then the graph would illustrate this relationship. Visually, it
appears that there is a linear relationship between the two variables (i.e. more days of training
missing = better match performance). This is an odd finding!
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2.

Using Linear Regression, we can add a linear model to this data. This model does indeed con-
firm what we suspected visually (more days of training missing = better match performance).
Quick Reminder: One of the assumptions of Linear Regression is Independence.



40 -

Match performance
N w
o o

-
o
1

0 5 10 15 20
Days without training

3.

Now assume that each of the 40 athletes belong to 1 of 4 different coaches. Here, I have
color coded the coaches to make it easier to distinguish the athletes. Such data violates the
assumption of Independence.

4,

If we model the data separately (based on the coach), we can see that there is actually a
negative relationship for each of the different models! That is to say: more days of training
missed = worse performance

5.

So applying Linear Regression when our data violates Independence (i.e. ignoring the effect of
different coaches) would estimate the slope of the overall relationship backwards! Naturally,
this would lead us to interpret the results backwards as well!
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6.

Enter: the Linear Mixed Model (LMM), which can be used when Independence is violated. As
we can see from the plot below, the LMM is consistent with the individual models for the 4
coaches.

Correlated data structures & ICC

Correlated data structures refer to a concept where entities within a dataset exhibit relation-
ships or dependencies with one another. These relationships can be based on various factors
such as similarity, association, or interaction. In the previous example, we saw how athletes
trained by the same coach often form a correlated data structure due to the shared influence
and guidance they receive from their coach. Other examples could include:

e The sprint times of the same track athlete across multiple training sessions tend to be
more related than the times of different athletes across similar sessions.

e Injury rehabilitation outcomes of athletes under the care of the same sports physiother-
apist are more similar than outcomes of athletes under different physiotherapists.

e The coordination and teamwork of players within the same team tend to be more syn-
chronized than those of players from different teams.

These data structures suggest inherent patterns of similarity or correlation among outcomes,
often modeled using the Intraclass Correlation Coefficient (ICC), also known as the Vari-
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ance Partition Coefficient (VPC) or the Intracluster Coefficient. The ICC is a statis-
tical measure that quantifies the degree of agreement or correlation among observations or
measurements within the same group or cluster.

ICC assesses the proportion of total variance in measurements that can be attributed to differ-
ences between entities within the same group relative to the total variance, thereby quantifying
the degree of agreement or correlation among these entities. A high ICC value indicates strong
agreement or consistency among observations within the group, suggesting a high degree of
correlation among the entities.

For example, when analyzing the sprint times of the same track athlete across multiple training
sessions, a high ICC value would indicate that the athlete’s performance is consistent across
sessions, reflecting a strong correlation among the measurements. This suggests that the ath-
lete’s sprint times are influenced by factors such as their training regimen, physical condition,
and technique, rather than random variability or measurement error.

ICC is particularly useful for evaluating the reliability of measurements within correlated data
structures, as it accounts for both within-group variability (variability among individual en-
tities within the group) and between-group variability (variability between different groups).
By quantifying the degree of agreement among related observations, ICC enhances the in-
terpretation and reliability of data in sports science and related fields, enabling researchers
to make more informed decisions and draw meaningful conclusions based on the observed
correlations.

In a linear mixed model, the between-group ICC can be interpreted as the proportion of



the total variance that is explained by differences between groups (random intercepts). The
formula for the between-group ICC is:

2
random intercept
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random intercept residual
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* Oindom intercept T€PTESENtS the variance due to the random intercept (i.e., variance between
groups or clusters).
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This ICC quantifies the degree of similarity of observations within the same group. A higher
ICC means that a larger proportion of the total variance is explained by the group-level
differences.

The within-group ICC (or within-group correlation) is typically a measure of the reliability
of the residuals, reflecting how much of the variation is unexplained by the grouping structure.
It can be interpreted as:

2
ot
ICC yipin = 1 —ICC = residual
within between 0_2 4 0.2

random intercept residual

Where:

o 02 iiual 1S the variance within groups (unexplained by the model).

L) | is the total variance in the model.

2
random intercept + O residua

Levels

In the context of correlated data structures, such as athletes trained by the same coach or
patients treated by the same healthcare provider, the concept of levels refers to the hierarchical
structure of the data. Each level represents a different unit of analysis or aggregation within
the dataset, with higher levels encompassing lower levels and potentially introducing additional
sources of variability or correlation.

For example, consider a study analyzing the performance of athletes within the same sports
team. In this scenario, the hierarchical structure may consist of the following levels:

e Level 1 - Individual Athletes: This level represents the lowest level of analysis, with
each individual athlete serving as a separate unit of observation. Data collected at this
level may include athlete-specific characteristics, such as age, gender, skill level, and
performance metrics (e.g., sprint times, jump heights).



e Level 2 - Sports Teams: This level represents the aggregation of individual athletes
into sports teams or groups. Data collected at this level may include team-specific
variables, such as coaching style, team dynamics, training regimen, and overall team

performance.
Level 2 Team A TeamB Team C
Level 1 Athlete Athlete Athlete Athlete Athlete Athlete Athlete Athlete Athlete
1 2 3 4 5 6 7 8 9

Within this hierarchical structure, correlations and dependencies may exist both within each
level (e.g., similarities among athletes within the same team) and between different levels (e.g.,
similarities between teams coached by the same coach). Analyzing data at multiple levels
allows researchers to account for the nested nature of the data and explore the effects of both
individual-level and group-level factors on outcomes of interest.

Fixed and Random Effects

In statistical modeling, particularly in the context of correlated data structures with hierar-
chical levels, researchers often need to make decisions about whether to include fixed effects,
random effects, or both in their models. Understanding the differences between fixed and ran-
dom effects is crucial for appropriately modeling the data and drawing accurate conclusions.
Let’s delve into each:

Fixed Effects:

Fixed effects are parameters that are treated as constants in the model, representing specific
levels or categories of a factor. They are called “fixed” because they are assumed to be fixed
and known quantities, rather than being sampled from a larger population.

Characteristics:

¢ Specific Levels: Fixed effects are used to estimate the effect of specific levels or cate-
gories of a factor on the outcome variable.

¢ Parameter Estimation: In a model with fixed effects, separate coefficients are esti-
mated for each level of the factor.

o Interpretation: The coefficients associated with fixed effects provide information about
the average effect of each level of the factor on the outcome variable.



Example: In a study examining the effect of different training programs on sprint performance,
fixed effects would estimate the average improvement in sprint times associated with each
training program.

Random Effects:

Random effects, on the other hand, are variables that are treated as random draws from a
larger population. They represent variability within a particular level of a factor, capturing
unobserved heterogeneity or random variation that is shared among observations within the
same level.

Characteristics:

e Shared Variability: Random effects capture variability that is shared among observa-
tions within the same level of a factor.

e Parameter Estimation: In a model with random effects, parameters are estimated for
the distribution of the random effects rather than for each individual level of the factor.

¢ Interpretation: The variance component associated with random effects quantifies the
amount of variability within each level of the factor.

Example: In a study analyzing the effect of coaching style on athlete performance, random
effects would capture the variability in performance outcomes that is shared among athletes
coached by the same coach.

Fixed vs. Random Effects:

Considerations:

¢ Interpretation: Fixed effects provide information about the average effect of specific
levels of a factor, while random effects capture variability within levels.

¢ Model Complexity: Including random effects can increase the complexity of the model
but may provide a more accurate representation of the data structure.

o Inference: Fixed effects are often used for hypothesis testing and making inferences
about specific levels of a factor, while random effects are useful for estimating overall
variance and accounting for clustering within levels.

Integration: In many cases, both fixed and random effects may be included in the same model
to account for different sources of variability and provide a comprehensive understanding of the
data. This approach, known as mixed-effects modeling, allows researchers to simultaneously
estimate fixed effects associated with specific factors of interest and random effects associated
with variability within levels of those factors.
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Slopes & Intercepts

Now that we understand the distinctions between fixed and random effects, let’s delve deeper
into the critical decisions surrounding slopes and intercepts when constructing LMMs for cor-
related data structures. See the textbox below for a reminder on intercepts and slopes.

@ Reminder: Intercepts & Slopes

Intercept: In statistical modeling, the intercept (often denoted as ) is a constant term
in the model equation that represents the predicted value of the outcome variable when
all predictor variables are set to zero. It represents the starting point of the regression
line when all predictors have zero values.

Slope: The slope (often denoted as ;) represents the rate of change in the outcome
variable for a one-unit change in the predictor variable. It quantifies the strength and
direction of the relationship between the predictor and outcome variables.
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Click on the tabs below to visualise models with different fixed and random effects for intercepts
and slopes:

1.

The data We will consider the same example from section 1 (athletes clustered within different
coaches). In the plot below, each point represents a different athlete. The colors represent dif-
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ferent coaches (or clusters). The dependent variable is performance score, and the independent
variable is weeks of training missed.
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Fixed Intercept & Slope Fitting an ordinary linear model, with fixed intercept and slope,
would ignore the correlated data structure, and assume each athlete has the same starting
performance score (intercept), and the same rate of decrease in performance score (slope).
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3.

Random Intercepts It may be the case that each coach has a different starting performance
score for their athletes, while the rate at which performance decreases is consistent across all
athletes. If we believe this to be the case, we would want to allow the intercept to vary by
coach.

13



80
e © 8
e § ° e o o °
60 o \O o
8\\\ O — 7”‘6""*—— . O
- — o —
g @ T @ T (@) @ O
£ T
Eo © —8 o & o
@ - @ o O ®
8 ——=  ° o
o—— [6) —
—0. o &
20 g
o —©
8 © o
O
O
0.0 25 50 75
Training missed (weeks)
4.

Random Slopes Alternatively, we could imagine that athletes performance starts at the
same level (fixed intercept) but decreases at different rates depending on the coach. We could
incorporate this idea into a statistical model by allowing the slope to vary, rather than the
intercept.
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5.

Random Intercepts & Slopes It’s reasonable to imagine that the most realistic situation
is a combination of the scenarios described as: “Athletic performance start at different levels
and decrease at different rates depending on the coach.” To incorporate both of these realities
into our model, we want both the slope and the intercept to vary.
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Assumptions

1. Linearity: The relationship between the predictors and the response variable is assumed
to be linear.

2. Normality of residuals: The residuals are assumed to be normally distributed.

3. Homogeneity of variances: The variance of the residuals remains constant across all
levels of the predictors.

4. Normality of random effects: The random effects are assumed to be normally dis-
tributed.

Case Study

What to expect

In this lesson we will investigate the impact of recovery methods, such as compression garments
and electrical stimulation, on the countermovement jump (CMJ) height of elite cross-country
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skiers relative to a control group, post competition. Measurements will be conducted at
baseline and at 8, 20, 44, and 66 hours after a competition.

Specifically, we will investigate if there is a main effect for TIME and CONDITION, as well as an
interaction effect for TIMEx CONDITION.

Data Loading and Cleaning

For this exercise, we will use the GovRec dataset from the speedsR package.

# Load the speedsR package
library(speedsR)

# Access and assign the dataset to a variable
Recovery <- GovRec

Initial Exploratory Analyses
Data organisation

GovRec is a data set that contains 9 variables:

e ID: Athlete ID

o SEX: Male, Female

e TIME: Baseline, 8 hours post-race; 20 hours post-race; 44 hours post-race; 68 hours post-
race

o CONDITION: Recovery Condition (Control; compression garment; electrical stimulation)

e CK: Creatine kinase (ukat)

o UREA: Urea (mmol/L)

o DP_PEAK: Double pole ergometer test peak power (W)

o CMJ_HEIGHT: Countermovement jump height (cm)

o SLEEP_HOURS: Self reported sleep (hours)

To begin, we’re going to clean our data. This will involve converting some of the variables to
factors and redefining the levels within TIME and CONDITION so that “Baseline” and “Control”
can be used as reference levels.

Recovery_cleaned <- Recovery |>
as_tibble() |[>
mutate_at(c('ID','SEX'), as.factor) |[>
mutate (TIME = factor(TIME, levels = c('Baseline',
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'8 h Post-Race',
'20 h Post-Race',
'44 h Post-Race',
'68 h Post-Race'))) |[>
mutate (CONDITION = factor (CONDITION, levels = c('Control',
'Compression',
'Electrical Stimulation')))

Given the known sex differences for urea and CMJ height, we will construct separate models
for males and females:

Recovery_cleaned_F <- Recovery_cleaned |> filter(SEX == 'F')
Recovery_cleaned_M <- Recovery_cleaned |> filter(SEX == 'M')

Summary statistics

An initial exploration of CMJ_HEIGHT reveals a somewhat normal distribution, with values
primarily between 16cm and 46cm.

ggplot (Recovery_cleaned, aes(CMJ_HEIGHT)) +
geom_histogram()
25-

20-

15-

count

10-

1
0 10 20 30 40

CMJ_HEIGHT
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There is an outlier at 0 cm (a male participant), which is implausible based on the context of the
measurement. This value will be removed from further analyses to maintain data integrity.

# Filter for full data
Recovery_cleaned <- Recovery_cleaned |> filter(CMJ_HEIGHT > 0)

# Filter for males

Recovery_cleaned_M <- Recovery_cleaned |> filter(SEX == 'M',
CMJ_HEIGHT > 0)

We can use the skimr package to quicky obtain summary statistics for our chosen variables:

skim_m <- skimr::skim(Recovery_cleaned_M)
skim_f <- skimr::skim(Recovery_cleaned_F)

skim_m |> filter(skim_type == 'factor') [> select(2,6,7)

# A tibble: 4 x 3
skim_variable factor.n_unique factor.top_counts

<chr> <int> <chr>
1 ID 18 1: 5, 4: 5, 6: 5, 7: b
2 SEX 1 M: 87, F: 0O
3 TIME 5 Bas: 18, 68 : 18, 8 h: 17, 20 : 17
4 CONDITION 3 Con: 30, Ele: 30, Com: 27

In the output above (for men) we can see that each of the 18 IDs have 5 measurements (Baseline
to 68h post competition). As explained in section 1, this is a correlated data structure, where
CMJ height measurements will be similar within the same athlete. Thus, we can treat ID as
a cluster variable.

Time effects

Next, let us explore how CMJ_HEIGHT changes over time. Given the known biological differences
between males and females, we will split the plots by SEX:

# Relabel the time factors so it fits better on the plots
Recovery_cleaned_Time.01 <-
Recovery_cleaned |>
mutate (TIME = case_when(
TIME == 'Baseline' ~ O,
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TIME == '8 h Post-Race' ~ 1

TIME == '20 h Post-Race' ~ 2,

TIME == '44 h Post-Race' ~ 3,

TIME == '68 h Post-Race' ~ 4,
))

# Create a plot for TIME versus CMJ Height

nl <- ggplot(Recovery_cleaned_Time.O0l, aes(TIME, CMJ_HEIGHT)) +
geom_line(aes(group = ID), color = 'dark grey') +
geom_smooth(aes(group = 1), color = 'black') +

facet_wrap(~SEX)

# Same as above but factoring in CONDITI

ON

n2 <- ggplot(Recovery_cleaned_Time.01, aes(TIME, CMJ_HEIGHT, color =
geom_line(aes(group = ID), color = 'dark grey') +

geom_smooth(aes(group = CONDITION)) +
theme (legend.position = 'right',
legend.text = element_text(size
legend.title = element_text(size
facet_wrap(~SEX)

# Place the plots on top of each other
library(patchwork)
nl / n2

CMJ_HEIGHT
28 &
O M

20

=7),
=T7) +

CONDITION

5- === Control
II 30~ == Compression
- 25-
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In the plot above, the gray lines represent individual IDs and their change in CMJ_HEIGHT over
the 5 time points. The black line (top panel) represents the main effect for time (i.e. when
you average all of the individual effects).

e From the top panel, we can see that whilst Males typically have higher CMJ_HEIGHTS
compared the females (as expected), the change over time appears similar for both sexes.

e In the bottom panel, we can see how CMJ height changes over time when split by recovery
condition. There are some noticeable differences here, so we should take note of these
when we run the main analysis.

Buldining the LMM
An initial model

The first model fit in almost any multilevel context should be the unconditional means model,
also called a random intercepts model. In this model, there are no predictors at either level;
rather, the purpose of the unconditional means model is to assess the amount of variation at
each level—to compare variability within subject to variability between subjects. Expanded
models will then attempt to explain sources of between and within subject variability.

# Load libraries
library (1lme4)
library(lmerTest)

# Build unconditional means model for females
modO_F <- lmer(CMJ_HEIGHT ~ 1 + (1|ID), data = Recovery_cleaned_F)

# Build unconditional means model for males
mod0_M <- lmer(CMJ_HEIGHT ~ 1 + (1|ID), data = Recovery_cleaned_M)

Using the summary function, let us examine the random effects in the model (we don’t care
about the fixed effects now because we haven’t added any predictors yet)

VCrandom F <- VarCorr (modO_F)

print (VCrandom_F, comp = c("Variance", "Std.Dev."))
Groups  Name Variance Std.Dev.
1D (Intercept) 8.5842  2.9299
Residual 1.71560 1.3096

From this output:
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e 02 =1.72: the estimated variance in within-person deviations.
e 02 =8.58: the estimated variance in between-persons deviations.

The relative levels of between- and within-person variabilities can be compared through the
intraclass correlation coefficient (ICC):

Betweenvariability 8.58

1CC = =
Totalvariability 8.58 +1.72

=.833

Thus, 83.3% of the total variability in CMJ height for females are attributable to differences
among subject. Note: as ICC approaches 0, responses from an individual are essentially inde-
pendent and accounting for the multilevel structure of the data becomes less crucial. However,
as ICC approaches 1, repeated observations from the same individual essentially provide no
additional information and accounting for the multilevel structure becomes very important.

Repeating this for males:

VCrandom M <- VarCorr(modO_M)

print (VCrandom_M, comp = c("Variance", "Std.Dev."))
Groups  Name Variance Std.Dev.
1D (Intercept) 26.4708 5.1450
Residual 2.5833 1.6073
Here, the ICC (% = .911) tells us that 91.1% the total variability in CMJ height for

males are attributable to differences among subject.

Using the plot_model () function from sjPlot, we can visualise this random effects to get a
sense of the variability between and within participants. In the function we would specify type
= 're' (where re = random effect).

sjPlot::plot_model(modO_F, type = 're', grid = F, sort.est = T)
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Adding effects

Let us now add in the main and interaction effects to our models:

# Build model for females
modl_F <- Imer (CMJ_HEIGHT ~ TIME + CONDITION + TIME:CONDITION + (1|ID),
data = Recovery_cleaned_F)

# Build model for males
modl M <- lmer(CMJ_HEIGHT ~ TIME + CONDITION + TIME:CONDITION + (1|ID),
data = Recovery_cleaned_M)

We can use the anova function to create an analysis of variance table which tests whether
the model terms are significant. The function can also be used to compared deviances from
different models to assess model fit. In our example, we are using it to see if the interaction
time TIMEx CONDITION is significant. As a reminder (see Lesson 1), our goal with modeling
should be to obtain the simplest model possible while retaining its predictive and explanatory
power. Thus, removing non-significant interactions identified helps streamline the model’s
complexity, ensuring that it remains parsimonious without sacrificing its ability to capture
essential relationships between variables.

anova(modl_F)

Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

TIME 18.1087 4.5272 4 44 3.3582 0.0175 =*
CONDITION 1.1898 0.5949 2 11 0.4413 0.6541
TIME:CONDITION 16.5989 2.0749 8 44 1.5391 0.1715
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

anova(modl_M)

Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr (>F)

TIME 45.363 11.3408 4 57.044 5.8839 0.0004911 =**x
CONDITION 2.471 1.2356 2 15.007 0.6411 0.5405550
TIME:CONDITION 23.261 2.9077 8 57.042 1.5086 0.1746394
Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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In the two outputs above, we can see that the neither interaction effects are statistically
significant. Thus, it makes sense to remove them for model simplicity.

Our next models will become:

# Build model for females
mod2_F <- lmer (CMJ_HEIGHT ~ TIME + CONDITION + (1]ID),
data = Recovery_cleaned_F)

# Build model for males
mod2 M <- lmer(CMJ HEIGHT ~ TIME + CONDITION + (1|ID),
data = Recovery_cleaned_M)

We can use the anova function to compare

anova(mod2_F,modl_F)

Data: Recovery_cleaned_F

Models:

mod2 F: CMJ_HEIGHT ~ TIME + CONDITION + (1 | ID)

mod1l_F: CMJ_HEIGHT ~ TIME + CONDITION + TIME:CONDITION + (1 | ID)
npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)

mod2_F 9 284.75 304.99 -133.38 266.75

modl_F 17 286.94 325.16 -126.47 252.94 13.817 8 0.08666 .

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

As a reminder from lesson 1, AIC and BIC are metrics that we can use to assess model fit,
with lower values representing better fit. From the output above, model 2 (no interaction
effect) fits the data better compared to model 1 (with the timexcondition effect). A test of
the model deviances revealed no significant difference between the two (p = .087). Thus, the
simpler method (without the interaction) should be the preferred model.

A similar observation is noted for males as well:

anova(mod2_M,mod1_M)

Data: Recovery_cleaned_M

Models:

mod2 M: CMJ_HEIGHT ~ TIME + CONDITION + (1 | ID)

mod1l_M: CMJ_HEIGHT ~ TIME + CONDITION + TIME:CONDITION + (1 | ID)
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npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)
mod2_M 9 395.03 417.22 -188.51  377.03
modl M 17 397.75 439.67 -181.88 363.75 13.278 8 0.1026

We can also use the tab_model () function from the sjPlot package to view both the fixed and
random effects in a table. The function also computes the ICC for us:

sjPlot::tab_model (mod2_F, mod2_M,
dv.labels = c('CMJ Height Females','CMJ Height Males'))

CMJ Height Females
CMJ Height Males
Predictors

Estimates

CI

b

Estimates

CI

b

(Intercept)

27.91

24.73 - 31.08
<0.001

32.05

27.69 — 36.42
<0.001

TIME [8 h Post-Race]
-0.13

-1.04 - 0.78

0.779
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0.40

-0.57 - 1.37

0.414

TIME [20 h Post-Race]
-0.68

-1.59 - 0.23

0.142

-0.70

-1.67 - 0.27

0.154

TIME [44 h Post-Race]
-1.36

-2.27 --0.44

0.004

-1.53

-2.50 — -0.56

0.002

TIME [68 h Post-Race]
-1.14

-2.06 —-0.23

0.015

-1.23

-2.18 —-0.28

0.012

CONDITION [Compression]
1.34

-2.85 — 5.53

0.525

0.06
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-6.05 - 6.18
0.984

CONDITION [Electrical
Stimulation]

-0.46

-4.65 — 3.74
0.828

2.99

-3.12 - 9.10
0.333
Random Effects
2

1.46

2.04

00

9.47 1p

27.83 1p

ICC

0.87

0.93

N

14 1p

18 1p
Observations
70

87

Marginal R? / Conditional R?
0.077 / 0.877
0.078 / 0.937
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From the output above we can see that:

For females, CMJ height is 1.36cm lower at 44h post-race compared to baseline (95% CI =
-2.27 to0 -0.44, p = .004); and 1.14cm lower at 68h post-race compared to baseline (95% CI =
-2.06 to -0.23, p = 0.015), when controlling for recovery condition. The random effects indicate
the average between subject standard deviation in CMJ height to be 1.46cm, with a variability
of 9.47cm across individual subjects. The ICC reveals that 87% of the total variability in CM.J
height can be attributed to differences among individual subjects.

For males, CMJ height is 1.53m lower at 44h post-race compared to baseline (95% CI = -2.50
to -0.56, p = .002); and 1.23m lower at 68h post-race compared to baseline (95% CI = -2.18
to -0.28, p = 0.012), when controlling for recovery condition. The random effects indicate the
average between subject standard deviation in CMJ height to be 2.04cm, with a variability of
27.83cm across individual subjects. The ICC reveals that 93% of the total variability in CM.J
height can be attributed to differences among individual subjects.

Note: The interpretation above is only relevant to the Control group, which is the reference
level. To interpret for Compression and Electrical stimulation conditions as well, we can add
the estimates for each effect of interest together. For example, if we look at the Female model,
the estimated mean CMJ height for each of the three conditions at baseline can be calculated
by adding the Intercept estimate (27.91) to the estimate for the other two conditions (1.34
and -0.46, respectively):

Baseline:

e« Control = 27.91 cm
e Compression = 27.91 4 1.34 = 29.25 cm
e Electrical S. = 27.91 - 0.46 = 27.45 cm

These baseline values can then be added to estimate for each time point from the table to view
the mean CMJ height:

8h Post-Race:

e Control = 27.91 - 0.13 = 27.78 cm
e Compression = 27.91 + 1.34 - 0.13 = 29.12 cm
e Electrical S. = 27.91 - 0.46 - 0.13 = 27.32 cm

20h Post-Race:

¢ Control = 27.91 - 0.68 = 27.23 cm
e Compression = 27.91 + 1.34 - 0.68 = 28.44 cm
e Electrical S. = 27.91 - 0.46 - 0.68 = 26.64 cm

This can then be repeated for the other time points as well
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Random Intercepts & Slopes

Now that we have seen how to add random intercepts to a model, the next step is to consider the
inclusion of random slopes. While random intercepts account for variations in the baseline level
of the response variable across different groups or individuals, random slopes take our modeling
capabilities a step further by allowing for the exploration of varying relationships between
predictors and the response within these groups. Incorporating random slopes acknowledges
that the effect of predictors may not remain constant across different levels of grouping factors.
Instead, it acknowledges the possibility that individuals or groups may exhibit distinct trends
or patterns in their responses, resulting in variations in the slopes of regression lines.

A common challenge with building a mixed model is determine which of your variables should
be fixed, and which should be random (or both fixed and random). In our current example, we
had previously fit CONDITION as a fixed effect only. Let us now explore fitting it as a random
slope as well:

# Build model for females
mod2_F_slopes <- lmer (CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION|ID),
data = Recovery_cleaned_F)

# Build model for males
mod2_M_slopes <- lmer (CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION|ID),
data = Recovery_cleaned_M)

Let us now compare this random intercepts slopes model to our previous random intercepts
only model:

anova(mod2_F_slopes, mod2_F)

Data: Recovery_cleaned_F
Models:
mod2_F: CMJ_HEIGHT ~ TIME + CONDITION + (1 | ID)
mod2_F_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION | ID)
npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)
mod2_F 9 284.75 304.99 -133.38 266.75
mod2_F_slopes 14 292.66 324.14 -132.33 264.66 2.0919 5 0.8363

anova(mod2_M_slopes, mod2_M)
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Data: Recovery_cleaned_M
Models:
mod2 M: CMJ_HEIGHT ~ TIME + CONDITION + (1 | ID)
mod2_M_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION | ID)
npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)
mod2_M 9 395.03 417.22 -188.51 377.03
mod2_M_slopes 14 400.78 435.31 -186.39 372.78 4.2447 5 0.5147

The output here suggests that adding Recovery Condition as a random slope does not improve
model fit for neither females or males. In both instances, the random intercept only model
has lower AIC and BIC values. In addition, there is no significant change in the deviances (p
= .836 and p = .515, respectively).

Note: In general, we should consider the theory behind the effects first, as this can save us
some valuable time in the modelling process. E.g. if there is no scientific reason that Recovery
Condition would vary for each ID, then there would be no reason to fit it as a random slope.
Suppose there is theoretical sense to include Time as a random slope (with Condition). This
can be coded as seen below. For the random effects structure, if you want to allow the slopes
associated with TIME to vary across levels of ID, you need to convert TIME to numeric in this
context. This is because random slopes are generally used for continuous predictors, allowing
for variability in the relationship between TIME and the outcome for different individuals (or
ID). When TIMEis numeric in the random effects part, it will allow the model to account for
how the effect of TIMEon CMJ_HEIGHT might differ for each ID:

# Build model for females
mod3_F_slopes <- lmer (CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION+as.numeric(TIME) |ID),
data = Recovery_cleaned_F)

# Build model for males
mod3_M_slopes <- lmer (CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION+as.numeric(TIME) |ID),
data = Recovery_cleaned_M)

Like before, we can compare these new models using the anova() function:

anova(mod3_F_slopes, mod2_F_slopes)

Data: Recovery_cleaned_F

Models:

mod2_F_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION | ID)

mod3_F_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION + as.numeric(TIME) | ID)
npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)

mod2_F_slopes 14 292.66 324.14 -132.33 264 .66
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mod3_F_slopes 18 298.23 338.70 -131.12  262.23 2.4278 4 0.6576

anova(mod3_M_slopes, mod2_M_slopes)

Data: Recovery_cleaned_M

Models:

mod2_M_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION | ID)

mod3_M_slopes: CMJ_HEIGHT ~ TIME + CONDITION + (CONDITION + as.numeric(TIME) |
npar AIC BIC 1logLik deviance Chisq Df Pr(>Chisq)

mod2_M_slopes 14 400.78 435.31 -186.39  372.78

mod3_M_slopes 18 400.00 444.38 -182.00 364.00 8.7851 4 0.0667 .

Signif. codes: O 'x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Heterogeneous Level 1 Variance Structures

In many experimental settings, the assumption of homogeneity of variance across groups may
not hold true. This can be particularly relevant when dealing with repeated measures data,
where variances may differ based on the conditions or time points being evaluated. To address
this issue, we can extend our linear mixed model framework by fitting a model that allows for
heterogeneous variances.

In this section, we utilize the gls function from the nlme package to specify a generalized least
squares model with a structure that accounts for varying residual variances across different
levels of the CONDITION factor over time. The model is formulated as follows:

library(nlme)
mod_hetero <- gls(CMJ_HEIGHT ~ TIME * CONDITION,
data = Recovery_cleaned_F,
weights = varIdent(form = ~TIME | CONDITION))

The model includes the interaction term between TIME and CONDITION, which allows us to
assess how the relationship between TIME and the outcome variable, CMJ_HEIGHT, may vary
across different conditions. The weights argument specifies that the variances should be mod-
eled as a function of TIME, with separate variance estimates for each CONDITION.

To visualize the model predictions and better understand the effects, we create a new
dataset that includes all combinations of TIME and CONDITION for which we want to predict
CMJ_HEIGHT. This is achieved using the expand.grid function:
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# Create a new dataset for predictions
new_data <- expand.grid(
TIME = unique(Recovery_cleaned_F$TIME),
CONDITION = unique(Recovery_cleaned_F$CONDITION)
)

# Add predictions to the new dataset
new_data$predicted_CMJ_HEIGHT <- predict(mod_hetero, newdata = new_data)

With the predictions calculated, we can create a line plot to visualize how CMJ__HEIGHT
varies with TIME for each CONDITION. The following code generates this plot:

# Plot the predictions
ggplot (new_data, aes(x = TIME, y = predicted_CMJ_HEIGHT, color = CONDITION)) +
geom_line(aes(group = CONDITION)) +
labs(title = "Predicted CMJ Height by TIME and CONDITION",
x = "Time",
y = "Predicted CMJ Height") +
theme_minimal ()

Predicted CMJ Height by TIME and CONDITION
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This visualization provides a clear depiction of the predicted relationships, allowing us to
observe how the expected CMJ_HEIGHT differs across conditions over time. Such insights are



crucial for understanding the dynamics of the data and informing further analyses or interven-
tions. By fitting a model that accounts for heterogeneous variances, we enhance the robustness
and interpretability of our findings, ensuring that we appropriately model the complexities in-

herent in our data.

Checking assumptions

As we have done in previous lessons, we can use the check_model () function from the ‘per-
formance’ package to check the assumptions of the models:

library(performance)
check_model (mod2_F,

check = c('linearity', 'homogeneity','qq', 'reqq','vif', 'outliers'))
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check = c('linearity', 'homogeneity','qq', 'reqq','vif', 'outliers'))
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For both models, whilst there is some variation, the assumptions are relatively satisfied, and
we can be happy to proceed.

mod9 F <- lmer (CMJ_HEIGHT ~ UREA:CONDITION + (1|ID),
data = Recovery_cleaned_F)

Additional considerations

Equivalence Testing

Thus far, we have examined this problem under the framework of traditional hypothesis testing,
where the focus is on detecting differences between groups or conditions. However, an alterna-
tive approach known as equivalence testing offers a different perspective, emphasising the
assessment of similarity rather than difference.

In equivalence testing, researchers define a region of practical equivalence (ROPE), represent-
ing the range within which the observed difference between treatments is deemed practically
indistinguishable. This ROPE is determined based on factors such as clinical relevance, prior
knowledge, or regulatory requirements.
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Continuing with our example comparing the effectiveness of three recovery methods: con-
trol, compression, and electrical stimulation, we could employ equivalence testing to ascertain

whether the outcomes produced by these methods are essentially similar.

o Within equivalence testing, two-sided testing assesses whether the observed difference

falls entirely within the predefined ROPE. If so, it indicates that the treatments are
practically equivalent. Conversely, if the observed difference lies entirely outside the
ROPE, it suggests that the treatments are not equivalent within the specified margin.
In our scenario, two-sided equivalence testing could be employed to evaluate whether the
recovery outcomes associated with compression and electrical stimulation methods are
practically equivalent to those of the control method within a predetermined range.

Alternatively, one-sided testing can focus on determining whether the observed difference
exceeds or falls short of the predefined margin, depending on the direction specified in the
hypothesis. For instance, if we hypothesise that the compression method is expected to
yield recovery outcomes superior to those of the control method, one-sided equivalence
testing could be used to assess whether the outcomes produced by compression are

practically equivalent to or better than those of the control method.

We can use the equivalence_test () function from the parameters package to test this:

# Female Model from earlier
mod2_F <- Imer (CMJ_HEIGHT ~ TIME + CONDITION + (1|ID),
data = Recovery_cleaned_F)

# Equivalence test

parameters: :equivalence_test(mod2_F,
range = 'default')

# TOST-test for Practical Equivalence

ROPE: [-0.31 0.31]

Parameter [ 90% CI | SGPV | Equivalence |
(Intercept) | [25.25, 30.56] | < .001 | Rejected |
TIME [8 h Post-Race] | [-0.89, 0.63] | 0.410 | Undecided |
TIME [20 h Post-Race] | [-1.44, 0.08] | 0.260 | Undecided |
TIME [44 h Post-Race] | [-2.12, -0.59] | < .001 | Rejected |
TIME [68 h Post-Race] | [-1.91, -0.38] | < .001 | Rejected |
CONDITION [Compression] | [-2.16, 4.84] | 0.089 | Undecided |
CONDITION [Electrical Stimulation] | [-3.96, 3.04] | 0.089 | Undecided |
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In the above output, we can see that the ROPE is computed as [-0.31 to 0.31]. This means that
the equivalence testing procedure will consider treatment effects to be practically equivalent
if the difference falls entirely within this range.

Next, we can examine the confidence intervals (CI) to assess whether the observed differences
between treatments fall within the ROPE. The CI provides a range of plausible values for
the true treatment effect, and if this range is entirely contained within the ROPE, it suggests
that the treatments can be considered equivalent. Conversely, if the CI extends beyond the
boundaries of the ROPE, it indicates that the treatments are not equivalent within the specified
margin.

The SGPV (Significant Group Probability Value) column provides information about whether
the observed difference between treatments is statistically significant. If the SGPV is less than
the conventional significance level (typically 0.05), it suggests that the observed difference is
statistically significant, indicating that the treatments have different effects. Conversely, if the
SGPV is greater than the significance level, it indicates that the observed difference is not
statistically significant, suggesting that the treatments may have similar effects.

The Equivalence column indicates whether the observed difference between treatments falls
within the region of practical equivalence (ROPE). If the observed difference is entirely con-
tained within the ROPE, it is considered practically equivalent, and the Equivalence column
will indicate “Accepted.” On the other hand, if the observed difference extends beyond the
boundaries of the ROPE, it is not considered practically equivalent, and the Equivalence
column will indicate “Rejected.”

We can create a plot of this to interpret the results better:

parameters: :equivalence_test(mod2_F,
range = 'default') |[>
plot ()
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TIMES h Post-Race -
TIME20 h Post-Race -
TIME44 h Post-Race - ——
TIMEG8 h Post-Race - ——
CONDITIONCompression -

CONDITIONEIectrical Stimulation -

-2.5 0.0 2.5 5.0

Equivalence @ Rejected Undecided

Modeling Heteroscedasticity

Addressing heteroscedasticity is a crucial aspect to ensure the robustness and validity of our
analyses. Heteroscedasticity occurs when the variance of the dependent variable differs across
levels of one or more independent variables. This phenomenon challenges the assumption of
homogeneity of variance, which assumes that the variability of data points remains constant
across all levels of categorical predictors. In our current example, the variability in CMJ
heights may differ between recovery methods due to factors such as individual differences,
treatment efficacy, or measurement error. To assess this, we can explicitly model and account
for heteroscedasticity.

One common approach to address heteroscedasticity in linear mixed-effects models is by spec-
ifying a variance structure that allows for different variances between levels of a categorical
predictor. In R, this can be achieved using the weights argument in the 1lme () function from
the nlme package.

library(nlme)
# Fit the initial model without considering heteroscedasticity
modelO <- 1lme(CMJ_HEIGHT ~ TIME + CONDITION,

random = ~ 1 | ID,
data = Recovery_cleaned_F)
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# Fit the model with a variance structure to account for heteroscedasticity
modell <- 1me(CMJ_HEIGHT ~ TIME + CONDITION,

random = ~ 1 | ID,

weights = varIdent(form = ~ 1 | CONDITION),

data = Recovery_cleaned_F)

Next, we can inspect the variance structure of modell via the summary function:

summary (modell)

Linear mixed-effects model fit by REML
Data: Recovery_cleaned_F
AIC BIC logLik
280.1444 303.7188 -129.0722

Random effects:

Formula: ~1 | ID
(Intercept) Residual

StdDev: 3.083958 1.06056

Variance function:
Structure: Different standard deviations per stratum

Formula: ~1 | CONDITION

Parameter estimates:
Control Compression Electrical Stimulation
1.000000 1.035479 1.331279

Fixed effects: CMJ_HEIGHT ~ TIME + CONDITION

Value Std.Error DF  t-value p-value

(Intercept) 27.808034 1.5850209 52 17.544270 0.0000
TIME8 h Post-Race -0.161185 0.4425837 52 -0.364192 0.7172
TIME20 h Post-Race -0.506098 0.4425837 52 -1.143509 0.2581
TIME44 h Post-Race -1.148830 0.4425837 52 -2.595734 0.0122
TIME68 h Post-Race -0.999056 0.4425837 52 -2.257328 0.0282
CONDITIONCompression 1.339000 2.0938814 11 0.639482 0.5356
CONDITIONElectrical Stimulation -0.457000 2.1013894 11 -0.217475 0.8318
Correlation:

(Intr) TIME8S8hP TIME2hP TIME4hP TIME6hP CONDIT
TIMES h Post-Race -0.140
TIME20 h Post-Race -0.140 0.500
TIME44 h Post-Race -0.140 0.500 0.500
TIME68 h Post-Race -0.140 0.500 0.500 0.500
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CONDITIONCompression -0.733 0.000 0.000 0.000 0.000
CONDITIONElectrical Stimulation -0.731 0.000 0.000 0.000 0.000 0.553

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.7971395157 -0.4754178554 0.0009398415 0.5010172659 2.1781102192

Number of Observations: 70
Number of Groups: 14

The Variance function part of the output indicates the estimated variance parameters associ-
ated with each level of the CONDITION variable.

In this output:

e Control (CON) condition: Estimated variance parameter = 1.000000
o Compression (COMP) condition: Estimated variance parameter = 1.035479
o Electrical Stimulation (NMES) condition: Estimated variance parameter = 1.331279

These estimated variance parameters represent the standard deviations of the residuals for
each level of the condition variable. Since these values are different for each condition, it
suggests the presence of heteroscedasticity (note: conducting an anova() of the two models,
or computing confidence intervals can provide further support of the differences in variances
between conditions).

Correlation Structures

In linear mixed models, the correlation structure refers to the pattern of correlation among
repeated measurements or observations within the same subject or cluster. This structure cap-
tures the dependence between observations and is essential for modeling the covariance matrix
of the random effects and residuals accurately. Different correlation structures are available
to accommodate various types of data and assumptions about the correlation pattern.

e The default (and what our models have assumed thus far) is the compound symmetric
(CS) or exchangeable structure, which assumes that all observations within the same
cluster or subject have the same correlation. This structure is appropriate when the
correlation between any pair of observations is constant and does not depend on their
relative positions.

e Another common correlation structure, especially with repeated measures, is the au-
toregressive (AR) structure, which assumes that the correlation between observations
decreases as the time or distance between them increases. The corAR1() structure, for
example, models the correlation between consecutive observations using a single param-
eter, often denoted as (rho), representing the autocorrelation coefficient.
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As an example, let us use the correlation() function from the nlme package to explore
this:

# Fit a model with default correlation structure
model_CS <- 1me(CMJ_HEIGHT ~ TIME + CONDITION,
random = ~ 1 | ID,
correlation = corCompSymm(),
data = Recovery_cleaned_F)

# Fit the model with an AR correlation structure
model_ AR <- Ime(CMJ_HEIGHT ~ TIME + CONDITION,
random = ~ 1 | ID,
correlation = corAR1(),
data = Recovery_cleaned_F)

# Compare models
sjPlot::tab_model (model_CS, model_AR,
dv.labels = c('CS structure','AR structure'))

CS structure

AR structure

Predictors
Estimates

CI

p

Estimates

CI

p

(Intercept)
27.91

24.72 - 31.10
<0.001
27.93

24.75 - 31.10
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<0.001

TIME [8 h Post-Race]
-0.13

-1.04 - 0.79

0.779

-0.13

-0.95 - 0.69

0.754

TIME [20 h Post-Race]
-0.68

-1.59 - 0.24

0.143

-0.68

-1.62 - 0.27

0.156

TIME [44 h Post-Race]
-1.36

-2.27 - -0.44

0.004

-1.36

-2.34 - -0.37

0.008

TIME [68 h Post-Race]
-1.14

-2.06 —-0.23

0.016

-1.14

-2.14 - -0.15

0.025
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CONDITION [Compression]
1.34

-3.28 - 5.95

0.536

1.27

-3.32 - 5.87

0.554

CONDITION [Electrical
Stimulation]

-0.46
-5.07 — 4.16
0.831
-0.45
-5.04 — 4.15
0.835
Random Effects
2
1.46
1.75
00
9.47 p
9.11 p
N
14 1p
14 1p
Observations
70
70
Marginal R? / Conditional R?
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0.386 / NA
0.331 / NA

The results obtained from these two models, despite utilizing different correlation structures,
suggests that either correlation structure might be suitable for analyzing the given dataset.
In this instance, both the compound symmetric (CS) and autoregressive (AR) correlation
structures produced fixed and random effects.

However, it’s essential to recognize that this may not always be the case. In many scenarios,
the choice of correlation structure can significantly impact the model’s results. Depending on
the nature of the data and the underlying correlation pattern, different correlation structures
may provide more accurate and reliable estimates. For instance, in longitudinal or time-series
data where observations are inherently correlated over time, an autoregressive (AR) or moving
average (MA) correlation structure may better capture the temporal dependencies between
observations. On the other hand, in clustered or grouped data where observations within
the same group are correlated, a compound symmetric (CS) or unstructured (UN) correlation
structure may be more appropriate.

Evaluating Autocorrelation in Time Series Designs

In time series data, it is crucial to evaluate the autocorrelation structure of the residuals to
ensure that the chosen model adequately captures the underlying dependencies in the data.
The nlme package can be used to specify the model, and the acf function from the stats
package can help us evaluate.

library(nlme)
library(stats)

# Fit the mixed-effects model

model <- 1me(CMJ_HEIGHT ~ CONDITION + TIME,
random = ~ 1 | ID,
correlation = corAR1(form = ~ as.numeric(TIME) | ID),
data = Recovery_cleaned_F)

# Extract residuals
residuals_model <- residuals(model, type = "normalized")

# Plot the autocorrelation function
acf(residuals_model, main = "ACF of Model Residuals")
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From this plot we can see that autocorrelations at non-zero lags are within the confidence
interval (blue dotted lines), suggesting that the AR(1) structure has effectively reduced the
temporal correlation in the residuals.

Conclusion & Reflection

In conclusion, this guide has provided an overview of linear mixed models, beginning with a
vignette for the importance of not violating Independence. We then learnt about correlated
data structures, as well as exploring the difference between fixed and random intercepts /
slopes. We then learnt how to fit different types of models to our Recovery data.

In addition to their versatility in handling correlated data structures, linear mixed models
(LMMs) offer a significant advantage over regular linear models (LMs) by accommodating
various types of data distributions and complexities. Unlike LMs, which assume independent
observations, LMMs can effectively model correlated data, making them more robust and
reliable in real-world applications. Moreover, the concepts learned in Lesson 2 on Poisson
regression and Lesson 3 on Logistic Regression extend to generalized linear mixed models
(GLMMs), providing a comprehensive toolkit for analyzing correlated data across different
scenarios. Understanding the principles of GLMMs opens avenues for exploring more sophis-
ticated statistical techniques in future lessons, enriching our understanding and application of
advanced modeling approaches.

Given the inherently multifaceted nature of data collected in sport and exercise science, rang-
ing from athlete performance metrics to physiological responses, the ability to account for
correlated structures is paramount. LMMs and GLMMSs enable researchers and practitioners
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to analyze complex datasets while appropriately addressing dependencies, thereby yielding
more accurate insights into athlete performance, injury prevention, training optimization, and
other critical aspects of sports science. As such, mastering these techniques not only enhances
the statistical rigor of analyses but also empowers professionals in sport and exercise science
to make informed decisions and drive advancements in athletic performance and well-being.

Knowledge Spot Check

Question 1

How does the assumption of independence differ between linear regression and linear mixed
models?

a) Linear regression assumes independence of observations within and across groups, while
linear mixed models allow for correlated observations within groups.

b) Linear regression assumes correlated observations within groups, while linear mixed mod-
els assume independence within and across groups.

c) Both linear regression and linear mixed models assume independence of observations
within and across groups.

d) Neither linear regression nor linear mixed models make assumptions about the indepen-
dence of observations.

Solution

a) Linear regression assumes independence of observations within and across groups, while
linear mixed models allow for correlated observations within groups.

Linear regression assumes that observations are independent of each other, both within and
across groups. In contrast, linear mixed models relax this assumption and allow for correlated
observations within groups (e.g., repeated measurements on the same individual or clustered
data). This flexibility makes linear mixed models suitable for analyzing data with correlated
observations, which often occur in longitudinal or clustered study designs.

Question 2

How does interpreting random effects in linear mixed models differ from interpreting fixed
effects?

a) Random effects capture systematic variation across groups, while fixed effects capture
random variation within groups.

46



b) Random effects represent unobserved, underlying group-level characteristics, while fixed
effects represent observed, fixed characteristics.

¢) Random effects are estimated from the data, while fixed effects are predetermined by
the researcher.

d) Random effects are interpreted in terms of their effect on the outcome variable’s mean,
while fixed effects are interpreted in terms of their effect on the outcome variable’s
variability.

Solution

b) Random effects represent unobserved, underlying group-level characteristics, while fixed
effects represent observed, fixed characteristics.

Random effects in linear mixed models capture variation across groups that are not of primary
interest but are assumed to be random samples from a larger population of groups. They
represent unobserved, underlying group-level characteristics that contribute to the variability
in the outcome. In contrast, fixed effects represent observed, fixed characteristics that are of
primary interest and are directly estimated from the data.

Question 3

What term in linear mixed models corresponds to the intercept term in linear regression?

a) Random effect
b) Fixed effect

c¢) Residual
d) Level

Solution

a) Random effect

In linear mixed models, the random effect term corresponds to the intercept term in linear
regression. It captures the variability in the outcome that is not explained by the fixed effects
and represents the baseline level of the outcome when all predictor variables are set to zero.

Question 4
In a linear mixed model analyzing the effect of a training program on athletes’ sprint perfor-

mance over time, which statement best describes the interpretation of the random slope term
(Time|Athlete)?
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a) The random slope term represents the overall trend of sprint performance improvement
across all athletes.

b) The random slope term represents the variability in sprint performance improvement
among athletes after accounting for the training program.

¢) The random slope term captures the individual differences in the rate of sprint perfor-
mance improvement over time for each athlete, accounting for the correlation between
repeated measurements from the same athlete.

d) The random slope term indicates the average rate of sprint performance improvement
across all athletes.

Solution

¢) The random slope term captures the individual differences in the rate of sprint perfor-
mance improvement over time for each athlete, accounting for the correlation between
repeated measurements from the same athlete.

In the context of a linear mixed model analyzing athletes’ sprint performance over time, the
random slope term (Time|Athlete) allows for individual variation in the rate of improvement
(slope) of sprint performance over time (Time) among different athletes. This term captures
how each athlete’s sprint performance changes over time relative to the overall trend, account-
ing for the correlation between repeated measurements from the same athlete. It does not
represent the overall trend of sprint performance improvement or the average improvement
rate across all athletes but rather accounts for the variability in improvement trajectories
among individual athletes.

Question 5

Within the context of Linear Mixed Models (LMM), what is the primary purpose of the
Intraclass Correlation Coefficient (ICC)?

a) Assessing the association between two continuous variables

b) Evaluating the reliability or consistency of measurements taken on the same individuals
or units across multiple occasions or raters

c¢) Testing the difference in means between two independent groups

d) Assessing the goodness of fit of a regression model

Solution

b) Evaluating the reliability or consistency of measurements taken on the same individuals
or units across multiple occasions or raters
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In Linear Mixed Models (LMM), the Intraclass Correlation Coefficient (ICC) is commonly
used to assess the reliability or consistency of measurements taken on the same individuals or
units across multiple occasions or raters. It quantifies the degree of agreement or consistency
between measurements, which is essential for ensuring the validity and reproducibility of study
findings within the framework of LMMs.
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