
Regression Modeling Strategies 2 - Poisson
Regression

Modeling Count Data in Sports Science

Poisson regression stands as a crucial statistical methodology frequently em-
ployed in sports science for the analysis of count data and the exploration of rela-
tionships between variables. In the realm of sports, this modeling technique proves
invaluable for delving into scenarios where the outcome of interest is a count vari-
able, such as the number of goals scored, injuries sustained, or penalties incurred
during a game. Unlike linear regression, Poisson regression is specifically tailored
for situations where the dependent variable represents counts of events within fixed
time intervals or areas. By modeling the distribution of these discrete events, sports
researchers can gain insights into the factors influencing the frequency of occur-
rences. For example, in soccer analytics, Poisson regression might be applied to
understand how various team strategies, player characteristics, or environmental
conditions contribute to the number of goals scored in a match. This approach
allows sports scientists to draw meaningful conclusions from count data, providing
a statistical framework to optimize tactics, minimize risks, and enhance overall
performance and safety in athletic contexts.

 Keywords

Poisson regression, count data, overdispersion, negative binomial regression, zero-inflated
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eter.

 Lesson’s Level

The level of this lesson is categorized as BRONZE.
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 Lesson’s Main Idea

• Understanding when to use Poisson regression models and their extensions for an-
alyzing count data in sports science.

• Exploring the concepts of equidispersion and overdispersion and learning how to
address them using quasi-Poisson and negative binomial regression.

• Examining zero-inflated models and their applications for data with excess zeros.

 Dataset Used In This Lesson

In this lesson, we use the HansIll dataset from the speedsR package, an R data package
specifically designed for the SPEEDS project. This package provides a collection of
sports-specific datasets, streamlining access for analysis and research in the sports science
context.

Learning Outcomes

By the end of this lesson, you will have developed the ability to:

• Model Count Data: Understand the key concepts of Poisson regression, including its
assumptions and extensions to handle overdispersion and excess zeros.

• Construct and Extend Models: Build Poisson regression models in R and extend
them using quasi-Poisson, negative binomial, and zero-inflated models.

• Interpret Model Outputs: Interpret coefficients, incidence rate ratios (IRRs), and
confidence intervals, and assess their significance in the context of sports science.

• Evaluate Model Fit: Apply diagnostic tools to check assumptions and evaluate the
goodness-of-fit of count models.

• Analyze Count Data in Context: Explore real-world sports applications, such as
predicting days sick or analyzing player performance metrics, while addressing overdis-
persion and zero-inflation challenges.

Introduction: Poisson Regression

Poisson regression is a versatile and widely utilized statistical technique designed for modeling
relationships between variables, particularly when the dependent variable represents counts of
events within fixed intervals or areas. This methodology is particularly well-suited for scenarios
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where the outcome of interest is a non-negative integer, such as the number of goals scored in
a soccer match, incidents of player injuries, or the count of penalties during a game.

The fundamental form of the Poisson regression model is expressed as:

ln(𝜆) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ...𝛽𝑛𝑋𝑛

where 𝜆 is the expected count of events, 𝛽0 is the intercept, 𝛽1, 𝛽2, ...𝛽𝑛 are the coefficients
associated with the independent variables 𝑋1, 𝑋2, ...𝑋𝑛 and ln denotes the natural logarithm.
The objective of Poisson regression is to estimate the coefficients that maximize the likelihood
of observing the given count data.

When discussing the results of statistical models like Poisson regression, it’s essential to under-
stand the different measures used to express associations or effects. Three common measures
are odds ratio (OR), log odds, and incidence rate ratio (IRR).

• Firstly, the odds ratio (OR) represents the odds of an event occurring in one group
compared to the odds of it occurring in another group. It’s a way to quantify the strength
and direction of association between two variables. For example, in a study comparing
the odds of heart disease in smokers versus non-smokers, an OR of 2 would mean that
smokers have twice the odds of developing heart disease compared to non-smokers.

• Log odds, often denoted as the natural logarithm of the odds, is the transformed form
of the odds ratio. Taking the logarithm of the odds is useful because it linearizes the re-
lationship between the predictor variables and the outcome, making it easier to interpret
and analyze. In many statistical models, including Poisson regression, the coefficients
are expressed in terms of log odds.

• On the other hand, the incidence rate ratio (IRR) is specific to Poisson regression and
is used when the outcome variable represents counts or rates of events occurring over
a period of time or within a certain population. IRR quantifies the relative change in
the incidence rate of the outcome for a one-unit change in the predictor variable, while
keeping other variables constant.

When interpreting the coefficients for Poisson regression, it is important to remember that the
coefficients are in log odds units. For example, let’s say we obtain a coefficient of 𝛽 = 0.20
for an explanatory variable X in our Poisson model. This coefficient represents the change
in the natural logarithm of the expected count of the outcome variable (often denoted as �)
for a one-unit increase in the predictor variable X, while holding all other variables constant.
Interpreting this coefficient in practical terms, we would say that for every one-unit increase in
the predictor variable X, the natural logarithm of the expected count of the outcome variable
increases by 0.20 units.

However, interpreting results in log odds units directly might not be intuitive for everyone.
Therefore, it’s common to exponentiate the coefficients to obtain the incidence rate ratio
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(IRR) or odds ratio (OR), depending on the context of the study, to provide more meaningful
interpretations.

𝑒0.20 = 1.22

This means that increasing X by one unit is associated with a 22% increase in the incidence
rate of the outcome variable, while all other factors remain constant.

Assumptions

Poisson regression adheres to the following statistical assumptions:

1. Poisson Response: The response variable is characterized by count data, representing
the number of events or occurrences within fixed time intervals or areas. This count
data is expected to follow a Poisson distribution, which is a probability distribution that
models the number of events happening in a fixed interval of time or space.

2. Independence: Each observation or count is independent of all other observations.
3. Equidispersion: The mean of the count data is approximately equal to its variance.

This relationship is a distinctive characteristic of Poisson-distributed data and reflects
the assumption that the variability in event occurrences is directly tied to the average
rate of events.

4. Linearity: The log-transformed mean rate is assumed to be a linear function of the
predictor variable(s).

The figure below (adapted from Roback and Legler, 2021) illustrates a comparison of a linear
regression model for inference to a Poisson regression using a log function of 𝜆.

• The panel on the left shows a linear regression model (in green). Note that the model is
linear and that y is normally distributed at different levels of x.

• The middle panel shows the Poisson regression model. The model is non-linear and
shows that y follows a Poisson distribution at different levels of x.

• The third panel shows a typical poisson distribution (note that if you flip the middle
panel by 90 degrees, the distributions shown reflect the shape from the third panel).
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What to expect

• In this example the dependent variable is number of days sick, which is a count variable
- making Poisson regression an appropriate initial model to test.

• We will learn how to fit Poisson regression models that contain both single and multiple
predictors.

• We will also learn how to use residual diagnostic tests to inspect the assumptions of our
model.

• Finally, we will learn about overdispersion and how to adjust for this with other models.

Data Loading and Cleaning

First, we’ll load the HansIll dataset from the speedsR package into our R environment.

# Load the speedsR package
library(speedsR)

# Access and assign the dataset to a variable
Illness <- HansIll
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Exploratory Data Analyses

As always, it is good practice to explore our data descriptively, before we build our models.
Much of this has already been covered in Exploratory Data Analysis (EDA) in Sport and
Exercise Science, so we will only provide a short example here.

Data organisation

HansIll is a data set that contains 39 variables. Some of the more relevant variables (to this
exercise) are listed below:

• ID: The participant’s ID number
• group: The testing condition for the participant, 4x(8x40/20s), 4x(12x40/20s) or 4x8min
• time: a binary factor to indicate results for either pre or post tests
• t_symp_score: Total Common Cold symptom score
• days_sick: number of days the participants were sick

Note that for this lesson we will only be using the post-test measurements. As such we should
create a filter to only include these measurements (i.e. when time is post). We will also only
include the variables of interest in our data set:

Illness_post <- Illness |>
filter(time == 'post') |>
dplyr::select('ID', 'group', 'time', 't_symp_score', 'days_sick')

Summary statistics

We can use the skimr package to quickly obtain summary statistics for our chosen variables:

library(skimr)
skim(Illness_post)

Table 1: Data summary

Name Illness_post
Number of rows 25
Number of columns 5
_______________________
Column type frequency:
factor 3
numeric 2
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________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
ID 0 1 FALSE 25 1: 1, 2: 1, 4: 1, 5: 1
group 0 1 FALSE 3 4x(: 9, 4x(: 8, 4x8: 8
time 0 1 FALSE 1 pos: 25, pre: 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
t_symp_score 0 1 40.56 45.79 0 8 20 62 184 �����
days_sick 0 1 5.32 6.61 0 0 2 9 20 �����

We can focus on the dependent variable further, by creating a histogram in ggplot:

ggplot(Illness_post, aes(days_sick)) +
geom_histogram(bins = 10, color = 'white')
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The figure above reveals a fair amount of variability in days sick: responses range from 0 to
20 with most people reporting 0 days sick. The plot is right skewed and clearly indicates that
days_sick is not normally distributed.

 Important

Note that this many zero’s in the distribution might suggest that a regular Poisson model
would not be appropriate either (see Figure 1 to inspect what a Poisson distribution
should look like). We will explore this below when we examine over dispersion.

The Poisson regression model also implies that log(𝜆𝑖), not the mean days sick 𝜆𝑖, is a linear
function of common cold severity score; i.e., 𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽1cold score𝑖. Therefore, to
check the linearity assumption (Assumption 4) for Poisson regression, we would like to plot
log(𝜆𝑖) by t_symp_score. Unfortunately, 𝜆𝑖 is unknown. Our best guess of 𝜆𝑖 is the observed
mean number of days sick for each common cold score (level of 𝑋). Because these means
are computed for observed data, they are referred to as empirical means. Taking the logs
of the empirical means and plotting by t_symp_score provides a way to assess the linearity
assumption.

sumstats <-
Illness_post |>
group_by(t_symp_score) |>
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summarise(m_days_sick = mean(days_sick),
logm_days_sick = log(m_days_sick))

ggplot(sumstats |> filter(t_symp_score < 180), aes(t_symp_score, logm_days_sick)) +
geom_point()+
geom_smooth(method = "loess", size = 1.5) +
ylab("Log of the empirical mean number of days sick") +
xlab('Common cold severity score')
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In the plot above, the relationship between cold score and the log of the mean days sick appears
relatively linear (note, an extreme outlier has been omitted).

Estimation and Inference

To begin, we will consider a simple model with only one predictor: t_symp_score. Similar to
the linear regression, the estimated regression equation for the Poisson model also contains an
intercept (𝛽0) and coefficients for the predictors (𝛽1, 𝛽2, etc.):

𝑙𝑜𝑔(�̂�) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛
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Similar to linear regression, we can use R to obtain the 𝛼 and 𝛽 values. Poisson regression
falls under the Generalised Linear Model family, which uses the function glm() to analysis.
The code is similar to linear regression, where you have:

• an argument for the formula (in this case: days_sick ~ t_symp_score)
• an argument for the data (in this case: Illness_post)

However, in addition to the formula and data, you also need to specify the family, which
represents the error distribution and link function to be used in the model. For Poisson
regression, the family = ‘Poisson’.

Therefore, we can run a Poisson model in base R with the following:

model1 <- glm(days_sick ~ t_symp_score,
data = Illness_post,
family = poisson)

As per usual, we can call the model results with the summary() function:

summary(model1)

Call:
glm(formula = days_sick ~ t_symp_score, family = poisson, data = Illness_post)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.74564 0.14568 5.118 3.08e-07 ***
t_symp_score 0.01498 0.00131 11.432 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 209.539 on 24 degrees of freedom
Residual deviance: 99.806 on 23 degrees of freedom
AIC: 157.68

Number of Fisher Scoring iterations: 5

With this output, we can substitute the Intercept and 𝛽 coefficient into our model:
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𝑙𝑜𝑔(�̂�) = 0.746 + 0.015𝑡_𝑠𝑦𝑚𝑝_𝑠𝑐𝑜𝑟𝑒

Note that the equation above would need to be back-transformed to be interpreted in the
original units. Here, exponentiating the coefficient on t_symp_score provides us with the
multiplicative factor by which the mean count changes.

exp(0.015)

[1] 1.015113

In this case, the mean number of sick days changes by a factor of 𝑒0.015 = 1.015 or increases by
1.5% with each additional score of Common Cold severity. This is also referred to as a rate
ratio or relative risk, and it represents a percent change in the response for a unit change
in the predictor.

We can also exponeniate our confidence intervals to interpret them in a similar manner:

exp(confint(model1))

2.5 % 97.5 %
(Intercept) 1.568051 2.777643
t_symp_score 1.012460 1.017681

From the above output, we would be 95% confident that the mean number of sick days increases
between 1.25% and 1.77% for each additional score of Common Cold severity. Note that
because our interval does not include 1, we can conclude that t_symp_score is significantly
associated with number of days sick.

Adding a covariate

Let us now add a covariate to the model, specifically group, which is made up of:

• 4x(8x40/20s),
• 4x(12x40/20s), or
• 4x8min

Recall from the multiple regression lesson that for categorical predictors, a reference level is
chosen from the categories, to serve as a baseline for comparison against the other levels. In
this example, 4x(12x40/20s) is chosen by default as the reference category.
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model2 <- glm(days_sick ~ t_symp_score + group,
data = Illness_post,
family = poisson)

summary(model2)

Call:
glm(formula = days_sick ~ t_symp_score + group, family = poisson,

data = Illness_post)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.35632 0.22888 1.557 0.11952
t_symp_score 0.01980 0.00186 10.645 < 2e-16 ***
group4x(8x40/20s) 0.60422 0.21544 2.805 0.00504 **
group4x8min -0.75589 0.25130 -3.008 0.00263 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 209.54 on 24 degrees of freedom
Residual deviance: 72.48 on 21 degrees of freedom
AIC: 134.35

Number of Fisher Scoring iterations: 6

Like before, we will need to exponeniate the coefficients and confidence intervals to interpret
this output:

exp(coef(model2))

(Intercept) t_symp_score group4x(8x40/20s) group4x8min
1.4280704 1.0199927 1.8298202 0.4695931

exp(confint(model2))
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2.5 % 97.5 %
(Intercept) 0.8919344 2.1920425
t_symp_score 1.0163949 1.0238581
group4x(8x40/20s) 1.2037316 2.8074274
group4x8min 0.2845771 0.7645142

Note, you can also use the tab_model() function from the sjPlot package to do this for you:

sjPlot::tab_model(model2)

Each of these effects can be interpreted as:

• The mean number of days sick increases by 2% for each additional increase in cold
symptom score, and this is statistically significant (95% CI = 1.016 to 1.024, p < .001),
when holding other factors constant.

• The mean number of days sick increases by 83% for those in the 4x(8x40/20s) group
compared to those in the 4x(12x40/20s) group, and this is statistically significant (95%
CI = 1.204 to 2.807, p = .005), when holding other factors constant.

• The mean number of days sick decreases by 53% for those in the [4x8min] group compared
to those in the 4x(12x40/20s) group, and this is statistically significant (95% CI = 0.285
to 0.765, p = .003), when holding other factors constant.

As we did with linear regression, we should check the statistical assumptions to have more
confidence in our results. To check that these assumptions have been met, we can simply
use the check_model() function from the easystats package. Note that the check_model()
function provides a range of diagnostic tests. We will only be requesting specific ones for
now:
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library(easystats)
check_model(model2,

check = c('overdispersion','outliers','qq','vif'))
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The influential observations, multicollinearity and normality of the residuals plots are inter-
preted in a similar manner to multiple regression (and this case, these look mostly met, with
one influential observation worth investigating).

The assumption of equidispersion is assessed from the top-left panel. If there the mean is
approximately equal to the variance, then we would expect a dispersion ratio ~ 1, with the
plot displaying the residual variance overlapping the predicted residual variance. Here, the
residual variance is greater than the predicted residual variance, as indicated by the green line
being above the blue line, at all levels. We can inspect this further with:

check_overdispersion(model2)

# Overdispersion test

dispersion ratio = 3.141
Pearson's Chi-Squared = 65.958

p-value = < 0.001
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The dispersion ratio here is 3.141, with the test indicating that the residual variances being
significantly different to the predicted residual variances (𝜒2 = 65.96, 𝑝 < .001). Ignoring
overdispersion can lead to underestimated standard errors, resulting in overly optimistic infer-
ence about the model’s coefficients. Note: we suspected this from the start when we inspected
the distribution of sick days.

We will have to try some different models to address this assumption.

Quasi-Poisson Regression

The quasi-Poisson regression model is a flexible extension of the standard Poisson regression
that accommodates overdispersion in count data analysis. In quasi-Poisson regression, the
variance is allowed to be a multiple of the mean, providing a more realistic representation of
the variability in the data. This is achieved by introducing a dispersion parameter that scales
the variance, allowing for greater flexibility in modeling count data with varying levels of dis-
persion. Estimating the dispersion parameter enables adjustment of the standard errors of the
coefficient estimates, accounting for the additional variability in the data. Quasi-Poisson regres-
sion is particularly useful when dealing with count data exhibiting overdispersion, providing
researchers with a robust framework for analyzing data while maintaining the interpretability
and simplicity of the Poisson regression model.

It’s quite simple to run a quasi-Poisson model in R. We would just have to change the family
type:

model3 <- glm(days_sick ~ t_symp_score + group,
data = Illness_post,
family = quasipoisson)

In the table above, we can compare the effects for the two models (Poisson versus Quasi-
Poisson). Notice that the Incidence Rate Ratios (exponentiated 𝛽 coefficients) are the same
between the two models. The difference lies in the confidence intervals and the estimation of
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the p-value. For the Quasi-Poisson Model, only the effect of Cold Symptom Score is statistically
significant, with the group comparisons displaying non-significant effects. We should check the
assumptions to validate our results:

check_model(model3,
check = c('overdispersion','outliers','qq','vif'))
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check_overdispersion(model3)

# Overdispersion test

dispersion ratio = 3.141
Pearson's Chi-Squared = 65.958

p-value = < 0.001

In this case, changing to the quasi-Poisson model only changed to estimates for the confidence
intervals, but had little effect on overdispersion. We will have to try a different approach.

Negative Binomial Regression

The negative binomial regression model is a powerful extension of the Poisson regression model
designed to handle overdispersed count data. Unlike the Poisson distribution, which assumes
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that the mean and variance are equal, the negative binomial distribution relaxes this constraint
by introducing an additional parameter called the dispersion parameter. This parameter cap-
tures the extra variability in the data, allowing the variance to be larger or smaller than the
mean. Negative binomial regression estimates both the regression coefficients for predictor
variables and the dispersion parameter, providing a flexible and robust approach for model-
ing count data with overdispersion. By explicitly modeling the variance-mean relationship,
negative binomial regression offers improved accuracy in parameter estimation and statistical
inference compared to Poisson regression when dealing with overdispersed count data.

While both the negative binomial (NB) regression model and the quasi-Poisson regression
model are extensions of the Poisson regression model designed to handle overdispersed count
data, they differ in their underlying assumptions and modeling approaches.

1. Parameterisation:

• In negative binomial regression, the overdispersion is explicitly modeled through an ad-
ditional parameter called the dispersion parameter (often denoted as 𝜃). This parameter
governs the relationship between the mean and variance of the count data.

• In quasi-Poisson regression, overdispersion is addressed by allowing the variance to be a
multiple of the mean without directly estimating a dispersion parameter. Instead, the
variance is assumed to be proportional to the mean, and the dispersion parameter is
implicitly absorbed into the model’s standard errors.

2. Flexibility:

• Negative binomial regression provides greater flexibility in modeling the relationship
between the mean and variance of count data. The dispersion parameter allows for
varying degrees of overdispersion, accommodating cases where the variance is greater or
less than the mean.

• Quasi-Poisson regression, while more flexible than the standard Poisson regression, as-
sumes a specific relationship between the mean and variance (i.e., variance is propor-
tional to the mean). This assumption may not always accurately capture the variability
in count data, especially in cases where the relationship between the mean and variance
is not strictly proportional.

3. Interpretation:

• Negative binomial regression estimates both regression coefficients for predictor variables
and the dispersion parameter. The interpretation of coefficients remains similar to Pois-
son regression, while the dispersion parameter quantifies the degree of overdispersion.

• Quasi-Poisson regression does not estimate a dispersion parameter explicitly. Instead, the
overdispersion is accounted for through adjusted standard errors of coefficient estimates.
Consequently, the interpretation of coefficients in quasi-Poisson regression remains the
same as in Poisson regression, with no additional parameter to quantify overdispersion.
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The run a negative binomial regression we can use the glm.nb function from the MASS package.
Note we do not need to specify the family argument because this is assumed to be negative
binomial from the function.

library(MASS)
model4 <- glm.nb(days_sick ~ t_symp_score + group,

data = Illness_post)

And like we did before, let us check the assumptions of this new model:

check_overdispersion(model4)

# Overdispersion test

dispersion ratio = 1.020
p-value = 0.472

Notice that for this model, the dispersion ratio is much closer to 1, and the statistical test has
identified no overdispersion.

Zero-Inflated Models

Given the observed distribution of the days_sick variable, where many participants reported
zero sick days, it is appropriate to consider zero-inflated models. These models are particularly
useful when the data contain an excess of zeros that cannot be adequately modeled by standard
Poisson regression. In this section, we will explore how to fit a zero-inflated Poisson (ZIP)
model to our data.
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Understanding Zero-Inflation

Zero-inflated models account for two processes: one that generates the excess zeros and another
that represents the count of days_sick among those who experience illness. In our case, we
can hypothesise that some participants are inherently healthy (and thus always report zero
days sick), while others may experience a count of sick days influenced by factors like symptom
severity and group.

Fitting a Zero-Inflated Poisson Model

To fit a ZIP model in R, we can use the pscl package, which provides the zeroinfl() function.
This function allows us to specify both the count model (which can be a Poisson or negative
binomial model) and the zero-inflation model. We can then fit a zero-inflated Poisson model
to the data using both t_symp_score and group as predictors in the count model, and we
can also include t_symp_score as a predictor for the zero-inflation process.

library(pscl)

zip_model <- zeroinfl(days_sick ~ t_symp_score + group | t_symp_score,
data = Illness_post,
dist = "poisson")

summary(zip_model)

Call:
zeroinfl(formula = days_sick ~ t_symp_score + group | t_symp_score, data = Illness_post,

dist = "poisson")

Pearson residuals:
Min 1Q Median 3Q Max

-1.4758 -0.4296 -0.2628 0.4017 1.8871

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.316248 0.256172 5.138 2.77e-07 ***
t_symp_score 0.012007 0.002099 5.720 1.06e-08 ***
group4x(8x40/20s) 0.274628 0.220482 1.246 0.2129
group4x8min -0.443564 0.252263 -1.758 0.0787 .

Zero-inflation model coefficients (binomial with logit link):

19



Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.41658 1.07019 2.258 0.0239 *
t_symp_score -0.11645 0.05589 -2.084 0.0372 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 29
Log-likelihood: -43.29 on 6 Df

The output will include coefficients for both the Poisson model and the zero-inflation model.
The count model coefficients represent the expected change in the count of sick days, while
the zero-inflation model coefficients indicate the predictors associated with the excess zeros.
The interpretation for the Count model coefficients is similar to the previous sections. The
zero-inflation model coefficients can be interpreted as follows:

• Intercept: Estimate = 2.416 This value represents the log-odds of a participant
being in the “always zero” group when t_symp_score is at its reference level. The
exponentiated value (𝑒2.416 = 11.14) indicates that participants with a zero symptom
score are 11.14 times more likely to be in the zero group compared to those with higher
symptom scores.

• t_symp_score: Estimate = -0.116 This negative coefficient indicates that as the
symptom score increases, the log-odds of being in the “always zero” group decreases. Ex-
ponentiating this value (𝑒−.116 = 0.89) suggests that for each unit increase in symptom
severity, the odds of reporting zero sick days decrease by about 11%. This result is sta-
tistically significant (p = 0.0372), indicating that higher symptom scores are associated
with a lower likelihood of being in the zero group.

Conclusion and Reflection

In conclusion, this guide has provided an overview of regression modeling techniques suitable
for count variables, beginning with the assumptions underlying such models. We explored
the classical Poisson regression, which assumes equidispersion, and its extensions, including
quasi-Poisson and negative binomial regression, which accommodate overdispersion commonly
encountered in count data. While our focus was on these three models, it’s worth noting
that there are other approaches available, such as zero-inflated and hurdle models, which can
further enhance our understanding of count data by addressing excess zeros and modeling zero
counts separately from positive counts.

Throughout our discussion, we applied these regression techniques to a practical example of
predicting the number of days sick for cyclists, using two predictor variables. However, it’s
important to acknowledge that this is just a starting point. We can extend our analysis
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by incorporating additional predictor variables and we can also explore interactions between
variables to uncover more complex relationships and better capture the nuances of the data
(see the lesson on Regression Modeling 1).

Further, we could have added random effects (more on this in the multilevel modeling lesson)
to account for the repeated measurements in our data. Recall, that we only looked at the
post-measurements to avoid violating independence. To include both pre and post, we can fit
a generalised linear mixed model (GLMER) to our data:

library(lme4)
glmer_mod <-
glmer(

formula = days_sick ~ t_symp_score + group + time + (1|ID),
data = Illness,
family = poisson)

sjPlot::tab_model(model2, model4, glmer_mod,
dv.labels = c('Poisson Model',"Negative Binomial Model", 'GLMER Model'),
collapse.ci = T)

Poisson Model

Negative Binomial Model

GLMER Model

Predictors

Incidence Rate Ratios

p

Incidence Rate Ratios

p

Incidence Rate Ratios

p

(Intercept)

1.43
(0.89 – 2.19)

0.120
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0.65
(0.21 – 1.89)

0.385

0.22
(0.04 – 1.15)

0.073

t symp score

1.02
(1.02 – 1.02)

<0.001

1.03
(1.02 – 1.04)

<0.001

1.04
(1.02 – 1.05)

<0.001

group [4x(8x40/20s)]

1.83
(1.20 – 2.81)

0.005

2.20
(0.79 – 6.31)

0.142

2.61
(0.55 – 12.46)

0.228

group [4x8min]

0.47
(0.28 – 0.76)

0.003

1.00
(0.32 – 3.24)
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0.994

0.76
(0.15 – 3.88)

0.740

time [post]

1.00
(0.79 – 1.27)

1.000

Random Effects

�2

0.75

�00

1.88 ID

ICC

0.71

N

25 ID

Observations

25

25

50
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R2 Nagelkerke

0.996

0.805

0.513 / 0.860

We won’t go into detail on this output (as it is covered in Lesson 4, and the intention of this
was just to provide a demonstration of the procedure). But from the output, we can see that
the GLMER model also includes IRRs that can be interpreted in the same manner we have
done previously. What GLMER also includes is a component on random effects. This tells us
about the variability in the data that is not explained by the fixed effects included in the model.
Random effects allow us to account for differences between individual subjects or groups that
are not explicitly modeled by the fixed effects. For example, the coefficients associated with
our random effect (in this model: participant ID) represent the extent of deviation of each
individual from the population average. Positive coefficients indicate that an individual tends
to have a higher response than average, while negative coefficients suggest a lower response:

$ID

ID

13199
15126

14
2027231811107
212
172924285
161426

−3 −2 −1 0 1 2 3

(Intercept)

Knowledge Spot Check

Question 1

What type of outcome variable is typically used in Poisson regression?
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a) Continuous
b) Binary
c) Count
d) Ordinal

Solution

c) Count

Poisson regression is commonly used when the outcome variable represents counts of events
or occurrences, such as the number of accidents, the number of deaths, or the number of
customer arrivals. It assumes that the outcome variable follows a Poisson distribution, which
is appropriate for count data.

Question 2

In Poisson regression, what is the link function commonly used to model the relationship
between the predictor variables and the mean of the outcome variable?

a) Identity function
b) Logit function
c) Exponential function
d) Log function

Solution

d) Log function

The log function (also known as the logarithmic or log-link function) is commonly used in
Poisson regression to model the relationship between the predictor variables and the mean
of the outcome variable. It ensures that the predicted values of the outcome variable are
non-negative and interpretable on the log scale.

Question 3

When interpreting the incidence rate ratios (IRRs) in Poisson regression, what does an IRR
greater than 1 indicate?

a) The expected count of the outcome variable decreases by the value of the IRR for a
one-unit increase in the predictor variable.

b) The expected count of the outcome variable increases by the value of the IRR for a
one-unit increase in the predictor variable.
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c) There is no relationship between the predictor variable and the expected count of the
outcome variable.

d) The IRR cannot be interpreted in Poisson regression.

Solution

b) The expected count of the outcome variable increases by the value of the IRR for a
one-unit increase in the predictor variable.

In Poisson regression, the incidence rate ratio (IRR) quantifies the change in the expected count
of the outcome variable for a one-unit increase in the predictor variable. An IRR greater than
1 indicates that the expected count of the outcome variable increases by the value of the IRR
for each one-unit increase in the predictor variable. This implies a positive association between
the predictor variable and the outcome variable’s count.

Question 4

What does overdispersion indicate in the context of Poisson regression?

a) The variability of the outcome variable is less than expected based on the Poisson distri-
bution.

b) The variability of the outcome variable is greater than expected based on the Poisson
distribution.

c) The outcome variable follows a normal distribution rather than a Poisson distribution.
d) The outcome variable is perfectly predicted by the predictor variables.

Solution

b) The variability of the outcome variable is greater than expected based on the Poisson
distribution.

Overdispersion in Poisson regression occurs when the observed variability of the outcome
variable is larger than what would be expected under the assumption of a Poisson distribution.
This means that there is more variability in the data than can be accounted for by the model,
which may lead to incorrect standard errors and inflated Type I error rates if not addressed
appropriately.

Question 5

How does overdispersion affect the standard errors and hypothesis testing in Poisson regres-
sion?
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a) Overdispersion has no effect on standard errors and hypothesis testing.
b) Overdispersion inflates standard errors, leading to underestimated p-values and poten-

tially misleading inference.
c) Overdispersion reduces standard errors, leading to overly conservative p-values and less

sensitive hypothesis testing.
d) Overdispersion results in more accurate standard errors and hypothesis testing due to

increased variability.

Solution

b) Overdispersion inflates standard errors, leading to underestimated p-values and poten-
tially misleading inference.

In Poisson regression, overdispersion can inflate the standard errors of the estimated coeffi-
cients, making them larger than they should be under the assumption of a Poisson distribution.
This inflation of standard errors results in underestimated p-values, which can lead to incor-
rect conclusions about the significance of predictor variables. Therefore, overdispersion can
compromise the validity of hypothesis testing in Poisson regression if not properly addressed.
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