Data Wrangling: Cleaning and Tidying Raw
Data

Transforming and Refining Raw Sports Data for Insightful Analysis

Dive into the intricacies of data wrangling to unveil the true potential of sports
data. This lesson is dedicated to transforming raw datasets into a structured,
analysis-ready format, essential for extracting actionable insights. We navigate
through data cleaning and tidying, employing tools from R’s tidyverse to refine
and reshape datasets for sports and exercise science applications. Designed for
sports analysts and practitioners, this lesson offers a hands-on approach to mas-
tering the art of data wrangling, focusing on practical techniques for dealing with
common data challenges. From parsing strings to reshaping data formats, you’ll
emerge equipped with the skills to turn raw numbers into compelling stories and
evidence-based decisions.

@ Keywords

Data wrangling, data cleaning, data tidying, data transformation, data organization, data
manipulation, tibble, data analysis, sports analytics, R, tidyverse, dplyr, tidyr, stringr,
visdat, speedsR.

(3
1 Lesson’s Level

The level of this lesson is categorized as BRONZE.

@ Lesson’s Main Idea

e Data wrangling, cleaning, and tidying form the bedrock of meaningful sports ana-
lytics, transforming raw datasets into structured, insightful sources.

e Mastering these processes in R’s tidyverse empowers practitioners to reveal hidden
patterns and insights essential for data-driven decision-making in sport and exercise
science science.




Dataset Featured In This Lesson

Disclaimer: The dataset featured in this lesson is entirely fictitious and has been arti-
ficially created for pedagogical purposes. Any resemblance to actual persons, living or
deceased, or real-world data is purely coincidental and not intended.

Learning Outcomes

By the end of this lesson, you will have honed the ability to:

¢« Manage and Concatenate Data Files: Skillfully manage and concatenate multi-file
datasets, harnessing the power of R to streamline data preparation processes in sport
analytics.

¢ Execute Data Wrangling Techniques: Apply robust data wrangling methods to
transform raw datasets into analyzable formats, enabling deeper insights in sport and
exercise science.

¢ Organize, Reshape, and Order Data Effectively: Implement data tidying tech-
niques to structure and reshape datasets, as well as order temporal data, facilitating
easier manipulation, modeling, and visualization.

¢ Ensure Data Precision: Master data cleaning strategies to rectify inaccuracies and
standardize datasets, ensuring precision and consistency for accurate sports data analy-
sis.

Introduction: Navigating Data Refinement in Sport and Exercise
Science

Clean Data - The Foundation of Effective Analysis

In sport and exercise science, practitioners often grapple with raw data collected from diverse
sources like training metrics, physiological measures, and performance statistics. This data,
while valuable, typically arrives in a format that’s not immediately conducive to analysis. The
crucial first step in extracting insights from this data is data wrangling, a comprehensive
process that includes data cleaning and data tidying.

Data cleaning focuses on eliminating errors and inconsistencies, such as rectifying inaccurate
entries, handling missing values, and standardizing data formats. Data tidying, meanwhile,
organizes the data more coherently. It ensures each column in the dataset represents a single
variable, and each row corresponds to a unique observation. Together, these steps transform a



raw and often messy data into a structured, logical format that’s primed for detailed analysis
and reveals the true story hidden within the numbers.

Data Wrangling - Shaping Raw Data into Insights

Data wrangling in sport and exercise science involves a nuanced process of molding raw data
into an analyzable format. This task, essential in the data analysis journey, goes beyond mere
cleaning and tidying. It represents a holistic approach to data preparation, where inquisitive
exploration meets meticulous refinement.

A key aspect of data wrangling is understanding what the raw data represents and discerning
the necessary steps for its transformation. Sports science professionals often need to:

e Assess the completeness of the data, identifying and addressing gaps or missing sections.

o Evaluate the format, ensuring datasets are structured correctly for meaningful analysis.

e Consider the sample size, determining if it accurately reflects the intended study popu-
lation.

o Identify potential biases in the dataset and strategize on how to mitigate their impact.

e Safeguard privacy when dealing with sensitive data and devise strategies to protect con-
fidentiality.

In addition to these strategic considerations, diagnosing whether a dataset is tidy involves
utilizing essential functions from the tidyverse packages in R, like head() to view initial
rows, summary () for statistical overviews, and colnames() to confirm variable names. These
tools allow sports science practitioners to probe and refine the data, ensuring it meets the
standards of tidiness and is ready for deeper analysis.

These inquiries and tools form the backbone of the data wrangling process, guiding practition-
ers through the often intricate process of data wrangling. By thoughtfully addressing these
aspects, sports science professionals ensure that the transition from raw data to a clean and
structured dataset is both efficient and effective. This process paves the way for extracting the
valuable insights needed to support evidence-based decisions in sport and exercise science.

Data Cleaning - Polishing Data for Accuracy and Consistency

Building upon the foundational steps of data wrangling, data cleaning in sport and exercise
science is a critical process, ensuring data’s precision and reliability. This step involves scruti-
nizing the dataset for errors and inconsistencies, an indispensable practice in the field where
accurate data is vital for sound decision-making.

The core elements of data cleaning include:

o Handling missing values: actively filling in or addressing gaps in data to prevent skewed
interpretations.



e Correcting errors: diligently rectifying incorrect entries, crucial for maintaining the in-
tegrity of the analysis.

e Dealing with outliers: identifying and managing data points that significantly deviate
from the norm, ensuring they don’t distort overall patterns.

e Standardizing formats: unifying the presentation of data for consistency, essential for
comparative and comprehensive analysis.

Through these focused efforts, practitioners in sports science are able to refine their datasets,
turning them into accurate and reliable sources for analysis. This meticulous approach to data
cleaning lays the groundwork for drawing meaningful, evidence-based conclusions, critical in
the strategic development of training, performance enhancement, and injury prevention within
the discipline.

Data Tidying - Structuring Data for Insightful Analysis

Continuing from the process of data cleaning, data tidying is the next essential step, focusing
on structuring data into a format that facilitates insightful analysis. This process is integral
to transforming data into a layout that is both accessible and analyzable.

Key aspects of data tidying include:

o Organizing variables and observations: ensuring each variable is represented in its own
column and each observation occupies a unique row. This clear distinction between
variables and observations is critical for accurate analysis.

e Streamlining data structure: reorganizing data to align with the principles of tidy data.
This involves not just rearranging data but also ensuring consistency in how data is
presented, which significantly aids in subsequent data manipulation, visualization, and
modeling tasks.

The objective of data tidying is to create datasets that are intuitively structured, making
them easier for sports science practitioners to explore and analyze. This organized framework
allows for more straightforward comparisons, trend analysis, and the development of predictive
models.

The Expected Outcome - A Clean and Analyzable Dataset

The culmination of the data wrangling process is the creation of a clean and tidy dataset
that simplifies analysis and visualization, paving the way for deeper insights. In this lesson,
we will demonstrate the techniques to achieve this clean, structured state of data by looking
at some ‘unclean’ dataset and exploiting the power of dplyr and tidyr packages in the R
programming language. By adhering to the principles of tidy data, sport science practitioners
will be well-equipped to extract valuable insights, essential for informed decision-making in
the field.



Tools for Data Wrangling, Cleaning, and Tidying

dplyr package in R

dplyr is a fundamental package in R for data wrangling, cleaning, and tidying. In our les-
son, we tap into a small yet powerful portion of dplyr’s capabilities. We use functions like
distinct () to remove duplicates and gsub() for fine-tuning string values, which are key for
tidying column names. Additionally, rename () plays a crucial role in making our data more
readable and consistent. These functions are just examples; dplyr offers a broad range of tools
that are incredibly useful for cleaning and organizing data, especially vital for sport science
data analysis.

tidyr package in R

The tidyr package is a key player in the R environment for data tidying. It offers specialized
functions like gather () for reshaping data from wide to long formats, a critical step for data
analysis. We also utilize tidyr’s separate () function, which allows us to split complex column
entries into simpler, more manageable parts. Used alongside str_sub() from the stringr
package, tidyr boosts our ability to efficiently clean and structure data. This combination of
tools makes tidyr an essential package for data scientists, especially in sports science where
data clarity and precision are paramount.

Both dplyr and tidyr, key components of the tidyverse collection of R packages designed for
data science, play a crucial role in transforming raw, messy, and cluttered datasets into clean,
structured formats ready for analysis. Their combined functionalities tackle a wide range of
data wrangling tasks, establishing them as essential tools in the data science toolkit, especially
for those in sports science and related fields.

Key Steps in Wrangling, Cleaning, and Tidying

Here, we provide a list of data cleaning and tidying steps that we cover in this lesson. The
order of these steps is standard and conventional accepted in the data science industry.

1. Load and concatenate datasets: starting with data loading is a standard approach
and sets the foundation for the rest of data manipulation.

2. Explore and diagnose the dataset: before cleaning, it’s essential to understand what
the data looks like.

3. Clean column names: this step is crucial for ease of the entire data manipulation
process.



4. Handling missing data: addressing missing data early in the process is a common
practice in data cleaning.

5. Replacing certain values: replacing values both in specific columns and across the
dataset is a valuable skill and comes handy, for instance, for handling missing values.

6. Dealing with duplicates: identifying and removing duplicates is a key step in data
cleaning.

7. Splitting by index and by character: these more advanced data manipulation tech-
niques come handy for handling strings and categorical variables.

8. Data types: understanding and modifying data types is crucial before performing any
analytical operations.

9. String parsing: this section involves converting string data to a numeric format, which
is a common task.

10. Dates formatting and ordering: handling date formats is an essential skill in data
science.

11. Reshaping data from wide to long format: this crucial step involves transforming
your data into a format that is most conducive for subsequent analyses, focusing on the
optimal structure for in-depth exploration.

Overall, this lesson covers a comprehensive range of data cleaning and tidying techniques. It
naturally progresses from basic to more advanced topics.

Wrangling, Cleaning, and Tidying an ‘Unclean’ Dataset

Install and Load Libraries

Most of the libraries required for this lesson are readily available on CRAN and can be installed
using the command install.packages("NameOfPackage"), if they are not already installed
on your computer:

install.packages(c("dplyr", "tidyr", "readr", "stringr", "visdat"), repos="https://cloud.r

Another library required for this lesson, speedsR, is specifically designed for the AIS SPEEDS
project. This package, not available on CRAN; offers an extensive collection of sports-specific
datasets, including the one used in this lesson. speedsR can be downloaded from the AIS
SPEEDS GitHub repository and integrated into any R-based Integrated Development Envi-
ronment (IDE). A detailed instruction on how to install and load speedsR is provided in the
dedicated section of our website.


https://speeds.quarto.pub/speeds/speedsR_data_package.html

After you have installed all the required packages, you can load them into your current R
session as follows:

rm(1list = 1s()) # clear the workspace

library(dplyr) # provides functions for manipulating datasets

library(tidyr) # tools for tidying data, reshaping and restructuring datasets
library(readr) # offers fast and user-friendly functions to read tabular data into R
library(stringr) # simplifies the process of working with strings, providing consistent an
library(visdat) # enables visual inspection of data quality and structure

library(speedsR) # collection of sports-specific benchmark datasets - part of the AIS SPEE

Load Datasets From The speedsR Package And Save As CSV Files

As noted in the disclaimer, the dataset used in this lesson is synthetically designed for educa-
tional purposes and provided through the speedsR package. This dataset is structured as a
multi-file dataset, replicating the kind of data formats sport and exercise science practitioners
might encounter in their professional practice.

Workflow Note

The sequence we adopt in this lesson—loading data from speedsR, saving it as CSV
files, and then reloading these files—is specifically designed for educational purposes.
This approach deviates from typical workflows found in the industry and is aimed at
providing hands-on experience with common data manipulation techniques in R.

Our educational workflow involves the following key steps:

1. Initial data loading from speedsR: we start by loading the multi-file dataset into the
RStudio environment directly from the speedsR package.

2. Local saving as multiple CSV files: subsequently, we save this dataset into several CSV
files on our local machine. This step, while not typically found in standard data analysis
workflows, is necessary for our educational objective.

3. Re-loading from CSV files using a naming pattern: the primary focus of this section is
to demonstrate how to efficiently load datasets initially stored across multiple CSV files
with a naming pattern. This is a common scenario in real-world data analysis, and we
use the function list.files() to achieve this. However, to get to this demonstration,
we first need to create the scenario by saving our dataset into multiple CSV files.



The reason for this additional step is that the dataset, originally available through the speedsR
package, needs to be converted into a format that mimics a real-world scenario. By first saving
the dataset into multiple CSV files and then reloading it, we are simulating a typical situation
where a practitioner would need to load data that is dispersed across various files with a
consistent naming pattern. This teaching approach is designed to provide practical experience
in handling and navigating multi-file datasets commonly encountered in the field, whether the
data is stored locally or in the cloud.

Through this unique workflow, our aim is to equip learners with the skills to manage datasets
in formats they are likely to encounter in their professional data analysis tasks, enhancing
their proficiency in using R for real-world data handling challenges.

To extract datasets from speedsR and make them available for use in this lesson, we employ
a loop that iterates through a list of dataset names. This approach utilizes R functions to
efficiently load each dataset and then save it as a CSV file. The get () function is crucial for
loading the datasets by their names, while paste0() helps in constructing the filenames for
saving. Finally, write_csv() is employed to save each dataset into its corresponding CSV
file.

# List of dataset names from speedsR

dataset_names_from_speedsR <- c("cycling untidy_fictitious_data_1",
"cycling_untidy_fictitious_data_2",
"cycling_untidy_fictitious_data_3",
"cycling_untidy_fictitious_data_4",
"cycling_untidy_fictitious_data_5")

# Loop through each dataset name from speedsR package
for (dataset_name in dataset_names_from_speedsR) {

# Use 'get()' to load the dataset from speedsR using its name
# 'get()' retrieves an object (here, a dataset) by its name given as a string
dataset <- get(dataset_name)

# Use 'pasteO()' to create a file name for saving the dataset
# 'paste0()' concatenates strings, here it adds ".csv" to the dataset name
file_name <- pasteO(dataset_name, ".csv")

# Save the loaded dataset as a CSV file with the name created above
write_csv(dataset, file_name)

This code showcases the power of automation in R. The loop structure simplifies the task
of handling multiple datasets, allowing us to load and save each dataset from speedsR with
minimal repetition of code. The combined use of get (), paste0(), and write_csv() functions



streamlines the process, making the datasets accessible for the subsequent steps of our data
wrangling lesson.

Load and Concatenate Datasets

In the previous step, we saved our multi-file dataset into several CSV files. Now, to mimic a
real-world scenario where sport and exercise science practitioners often work with multiple data
files, we’ll demonstrate how R’s robust functionality can streamline the process of combining
these files. Using list.files(), we'll efficiently identify files with a consistent naming pattern.
The base R function lapply () and the read_csv() function from the readr package will then
be used to read each of these files into R as individual tibbles. Finally, bind_rows () from
dplyr will seamlessly merge these data frames into a single cohesive dataset. This method
is time-efficient, ensures completeness, and is critical for accurate data analysis in sports
science.

# Get a list of all files in the *current directory* that match the pattern "cycling_ untid
# Store the name of each file in a vector 'cycling files'
cycling_files <- list.files(pattern = 'cycling untidy_fictitious_data_.*csv')

# Read each file in 'cycling_files' into a tibble, storing all the tibbles in 'cycling_lis
cycling list <- lapply(cycling_files, read_csv)

# Concatenate all tibbles in 'cycling_list' together
cycling _data <- bind_rows(cycling_list)

For further insights into best practices of file concatenation and merging, please refer to our
Data Organization, Merging, and Concatenation lesson.

Understanding Tibbles vs Dataframes in R

After successfully loading and concatenating our datasets from the speedsR package and CSV
files, it’s important to note that these datasets were loaded as tibbles, a specific type of data
structure in R. This distinction is crucial for understanding how our concatenated dataset,
cycling_data, behaves and interacts with R functions.

What is a Tibble?

A tibble, introduced by the tibble package within the tidyverse, is a modern reimagining of
the data frame. When datasets are loaded using tidyverse functions like read_csv (), they are
read in as tibbles, indicated by the data type spec-tbl-df or tbl-df. This format enhances


https://speeds.quarto.pub/speeds/Data_Organization.html

the data frame structure with improved printing and subsetting methods that are more suitable
for data analysis workflows.

Key Differences and Advantages

1. Printing: Tibbles provide a more concise printed output, displaying only the first ten
rows and all columns that fit on the screen. This approach is particularly useful for large
datasets, offering a quick snapshot without overwhelming the console.

2. Subsetting: Tibbles are less likely to change types when you subset rows, and they
never change the types of variables when you subset columns. This consistency ensures
more predictable and reliable results during data manipulation.

3. Row Names: Unlike traditional data frames, tibbles do not use row names. This design
choice simplifies operations and reduces confusion, especially for newcomers to R.

4. Non-standard Columns: Tibbles can handle columns containing complex objects, like
lists or matrices, without simplifying or altering the structure, which is a limitation in
regular data frames.

Why Use Tibbles?

The primary reason for using tibbles in data science is their user-friendly nature. They simplify
the exploration and manipulation of data, especially in the early stages of analysis. With
tibbles, practitioners can focus more on the data and less on wrestling with data types and
structures. In our lesson, since all datasets were loaded and concatenated as tibbles, the final
cycling_data dataset is also a tibble (tbl_df). This makes it easier to work with using
tidyverse functions and streamlines the data analysis process.

Explore and Diagnose the Dataset

After consolidating our cycling data into one dataset, the next step is to explore and diagnose
it. This initial exploration is crucial as it helps us understand the structure and characteristics
of our data before diving into more complex analysis.

Let’s start by examining the first few rows of the dataset using the head() function. This
function displays the top rows and gives us a glimpse of the data types and values we are
working with.

# Display the first few rows of the dataset
head(cycling_data)

10



# A tibble:

6 x 8

ID Race_date Team participant
<dbl> <chr> <chr> <chr>

1 1 07-06-2023 Victoria~ Mary_White
2 2 15-11-2023 Queensla~ Elizabeth_~
3 3 11-06-2023 Tasmania~ Robert_Smi~
4 4 <NA> <NA> Jennifer_W~
5 5 18-07-2023 Tasmania~ Mary_Jones
6 6 20-02-2023 Queensla~ Mary_Smith
# i 1 more variable: “V02 MAX® <chr>

“Gender

<chr>

<NA>
F33
M18
F25
F19
F30

AGE™

"heart RATE™ "DISTANCE km~
<dbl>

<dbl>
NA
146
73
123
69

67

36.
66.
90.

NA

88.
49.

Next, we use the summary() function to obtain a basic descriptive statistical summary of the

dataset.

# Get a statistical summary of the dataset
summary (cycling_data)

ID
Min. : 1.0
1st Qu.: 9.5
Median :18.0
Mean :18.0
3rd Qu.:26.5
Max. :35.0
Gender AGE

Length:35

Class :character
Mode :character

Race_date
Length:35

Class :character
Mode :character

heart
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.
NA's

RATE

: 60.

89.

:115.
:113.

139.

:175.

00
75
00
67
50
00

Te
Length
Class
Mode

am
:35

:character
:character

DISTANCE km

Min.
1st
Medi
Mean
3rd
Max.
NA's

:31.
48.
171,
:67.
83.
:97.

Qu.:

an

Qu.:

17

44
84
23
75
21
06

participant
Length:35

Class :character
Mode :character

V02 MAX
Length:35
Class :character
Mode :character

Lastly, using nrow() reveals the number of rows in the dataset. The ‘I’ suffix in outputs like
‘357 indicates an integer value, distinguishing it from numeric (floating-point) types. This
distinction is important in R for memory usage and certain operations, as R treats integers
and numerics differently. Note, that you can also use the dim() function to find out the full
dimensions of the dataset.
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# Find out the number of rows in the dataset
nrow_cycling data <- nrow(cycling data)

This basic exploration sets the stage for further data wrangling and more in-depth analysis.

Clean Column Names

Cleaning and standardizing column names is a crucial step in data preparation, ensuring ease
of data manipulation and consistency throughout analysis. In this section, we’ll refine the
column names of our dataset for better readability and standardization.

To view the original column names in our dataset, we use the colnames () function:
# Retrieve and print the original column names from the dataset

col_names <- colnames(cycling_data)
print (col_names)

(1] "ID" "Race_date" "Team" "participant" "Gender AGE"
[6] "heart RATE" "DISTANCE km" "V02 MAX"

Standardizing to Lower Case

Converting all column names to lower case is our initial step. This standardizes the format,
making subsequent processing more consistent and less error-prone. In R, column names are
case-sensitive; thus, ‘Age’ and ‘age’ would be treated differently. Standardizing to lower case
avoids confusion, simplifies code readability, and sets the stage for further modifications.

# Convert all column names to lower case for consistency and ease of use
col_names <- tolower (col_names)

Trimming White Spaces
Our next focus is removing any leading or trailing white spaces, ensuring clean and error-free

column names. The regular expression “\\s+|\\s+$ in the gsub() function serves this purpose
by identifying and eliminating unwanted spaces at the beginning and end of each string.
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# Remove any leading and trailing white spaces from the column names
# '"\\s+' matches leading spaces and '\\s+$' matches trailing spaces
col_names <- gsub(""\\s+[\\s+$", "", col_names)

The ~\\s+ part of the expression matches one or more (+) whitespace characters (\\s) at
the beginning (7) of the string. The | is the logical OR operator in regular expressions. It
allows for matching either the pattern before or after it. The \\s+$ part matches one or more
whitespace characters at the end ($) of the string. This step is vital for maintaining a neat
and error-free dataset structure.

1 Note

gsub() is a vectorized function, which means it can operate on multiple strings at once.
Therefore, using gsub() directly on a vector of strings (like column names) is more
efficient than using lapply ().

1 Checking for White Spaces in Column Names

The grepl () function in R serves as a powerful tool for detecting patterns within strings.
It can be particularly useful for identifying the presence of white spaces in column names.
For instance, using grepl ("~\\s+|\\s+$", col_names) checks each name in col_names
for any leading ("\\s+) or trailing (\\s+$) white spaces. The result is a logical vector,
where TRUE indicates the presence of white spaces and FALSE their absence, helping you
identify which column names need attention.

Replacing Spaces with Underscores
To further enhance readability, we replace spaces in the column names consisting of multiple

words with underscores, following the ‘snake_ case’ naming convention. This format is widely
used in programming for its clarity and ease of reading.

# Replace spaces with underscores to ensure column names follow snake_case format
col_names <- gsub(" ", "_", col_names)

Applying the Cleaned Column Names

Now we can apply the cleaned and standardized column names back to our dataset. This
ensures that all subsequent operations and analyses utilize these optimized names.
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# Apply the cleaned column names back to the dataset
colnames(cycling_data) <- col_names

Renaming Specific Columns

After general cleaning, we manually rename specific columns for additional clarity or to adhere
to standard naming conventions. This step tailors the dataset to our specific analysis needs.

# Manually rename specific columns for clarity and standardization
# Example: renaming 'vo2_max' to 'VO2_max' and 'id' to 'ID' for better readability or conv
cycling _data <- rename(cycling data, V02_max = vo2_max, ID = id)

Verifying Changes

A quick check of the updated column names confirms our cleaning efforts, marking a successful
end to this crucial data preparation step.

# Print the updated column names to verify changes
colnames(cycling_data)

(1] "1D" "race_date"  "team" "participant" "gender_age"
[6] "heart rate" "distance_km" "V02_max"

By following these steps, we ensure that our dataset’s column names are clean, consistent, and
conducive to efficient data analysis. This meticulous approach sets a strong foundation for all
future data manipulations and analyses.

Handle Missing Data

In this section, we briefly touch upon strategies for managing missing data. Handling missing
data is a critical aspect of data cleaning, involving techniques like imputation and removal. A
more detailed exploration of these strategies will be covered in a separate, dedicated tutorial
on our platform.
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Count and Replace Empty Cells with NAs

Firstly, we address empty cells in our dataset by identifying and replacing them with NA
values. This step ensures a uniform representation of missingness across the dataset, paving
the way for more accurate analyses.

# Identify and replace empty cells with NA across the entire dataset
cycling_datalcycling data == ""] <- NA

Count Missing Values (NA) in Each Column

Next, we use sapply () combined with sum(is.na(x)) to count the number of missing val-
ues in each column. This approach provides a detailed view of missing data across different
variables.

# Count the number of NA values in each column of the tibble
NA_count_per_column <- sapply(cycling_data, function(x) sum(is.na(x)))
print (NA_count_per_column)

ID race_date team participant gender_age heart_rate

0 6 6 0 5 5
distance_km V02_max

7 4

Total Count of Missing Values in the Dataset

For an overall assessment of data cleanliness, we calculate the total count of missing values in
the dataset. This gives us a quick understanding of the extent of missing data.

# If you don't need to know the missing values tally per column,

# you can compute the total number of missing values in the entire tibble
total_NA_count <- sum(is.na(cycling_data))

print (total_NA_count)

[1] 33
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Visualizing Missing Data

Lastly, we leverage the vis_miss() function from the visdat package for a visual representa-
tion of missing data. This visualization aids in comprehending the distribution and magnitude
of missingness within the dataset.

# Visualise missing data in the dataset
vis_miss(cycling_data)
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This overview presents fundamental steps in handling missing data. For a comprehensive guide
on tackling various types of missing data, including methods of data imputation and choosing
between different strategies, stay tuned for our upcoming lesson dedicated to this topic.

Replace Certain Values
Manipulating and refining data often involves replacing specific values within a dataset. This

section demonstrates two common scenarios: replacing values in a specific column and across
the entire dataset.

Replace Values in a Specific Column

Initially, we focus on a single column. For example, we might want to update team names in
the team column. This operation is particularly useful for correcting data entries or updating

16



information based on new criteria.

# Replace values in a particular column ('team' in our example) that meet a specific

cycling data$team[cycling data$team == "Tasmania_Track"] <- "ACT_Road"

Replace Values in the Entire Dataset

The next step is to apply a condition across the entire dataset. This is a more advanced
operation, showcasing the ability to make widespread changes efficiently. Our example involves
modifying numeric values in the dataset, such as replacing all numeric values below a certain
threshold with a new number, while keeping unique identifiers like IDs intact.

Modify numeric columns in the dataset, excluding the ID column.

while preserving the unique identifiers in the ID column.
The 'mutate_if' function is used here to selectively apply the replacement

H OH H H R

only to columns that are numeric and not the ID column.
cycling_data <- cycling_data 7>%

mutate_if (~is.numeric(.) && !identical(., cycling_data$ID), ~ifelse(. <= 40, 50,

By demonstrating these techniques, this section highlights the versatility of R in handling
value replacements, both at a column-specific level and across the entire dataset. It is a vital
skill for sport science practitioners looking to refine their datasets for more precise analyses.

Deal With Duplicates

In data analysis, particularly in sport and exercise science, addressing duplicate data is crucial.
Duplicates can skew results and provide misleading insights, hence their accurate identification
and removal are vital.

Identifying Duplicates

To identify duplicates, we utilize the duplicated() function. This function returns a Boolean
vector with either TRUE or FALSE values indicating which rows are duplicates of any other
rows in the dataset. We apply this function in two ways:

1. Including the ID Column: This approach checks for completely identical rows, in-
cluding any unique identifiers like the ID column. It’s useful when we need to identify
rows that are exact copies of others.

17

This operation replaces all numeric values less than or equal to 40 with 50,

condi

)



# Identify duplicates including the ID column

# Useful when checking for completely identical rows including identifiers
duplicates_including_id <- duplicated(cycling_data)

# Print Boolean vector showing duplicates

print (duplicates_including_id)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

2. Excluding the ID Column: Here, we ignore the ID column to focus on duplicates
based on data content. This approach helps in identifying duplicates that have identical
data but different IDs.

# Identify duplicates excluding the ID column

# This helps to find duplicates based on data content, ignoring unique identifiers (the ID
duplicates_excluding_id <- duplicated(cycling_datal[-1])

# Print Boolean vector showing duplicates

print (duplicates_excluding_id)

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

To see the actual duplicate rows, we use the which() function to obtain their indices and then
print these rows.

# Print rows that are duplicates (excluding ID)

# This gives a clear view of which rows are duplicate entries
duplicate_indices_excluding_id <- which(duplicates_excluding_id)
print (cycling_datalduplicate_indices_excluding_id, 1)

# A tibble: 5 x 8

ID race_date team participant gender_age heart_rate distance_km V02_max
<dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>

1 7 <NA> <NA> Jennifer_W~ F25 123 NA 79 mL/~

2 11 19-05-2023 Queens~ Michael_ Jo~ M20 112 41.8 52 mL/~

3 19 27-07-2023 Queens~ William_Wh~ M37 166 NA 30 mL/~

4 27 13-11-2023 ACT_Ro~ Jennifer_ W~ F25 100 81.3 55 mL/~

5 35 03-12-2023 Victor~ James_Will~ M25 64 77.9 73 mL/~
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Removing Duplicates

After identifying duplicates, we proceed to remove them:

1. Excluding ID from Dwuplicate Check: We first exclude the ID column to focus on
the content of the data.

2. Using distinct(): The distinct() function from dplyr eliminates duplicate rows
based on the remaining columns after the ID exclusion.

3. Re-adding Sequential IDs: We use mutate() with row_number () to add a new ID
column with sequential numbers. This preserves the order of the dataset.

# Remove duplicates from the dataset, excluding the ID column
# Preserve the order of the dataset by updating the ID column with the 'row_number()' func
cycling data <- cycling_data %>%

select (-ID) ¥>% # Temporarily remove the ID column

distinct() %>% # Eliminate duplicate rows based on remaining columns

mutate(ID = row_number()) %>% # Add a new ID column with sequential numbers

select(ID, everything()) # Reorder columns to place the new ID column at the beginning

Verifying Duplicate Removal

To ensure that duplicates have been effectively removed, we perform a final check:

1. Duplicate Check: We use duplicated() again, this time to confirm that no duplicates
remain after the cleaning process.

2. Counting Duplicates: The table() function, a versatile tool in base R, tallies the
frequency of each unique element within an R object that is supplied to table() as an
argument. In our case, table() counts the occurrences of TRUE (indicating duplicates)
and FALSE (indicating unique rows). Post-cleaning, we expect to see no occurrences of
TRUE, indicating successful removal of all duplicates.

# Verify that duplicates have been removed
duplicates_check <- duplicated(cycling_datal[-1])
print (duplicates_check)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE
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# Printing the output of the table() function should yield count O for TRUE after cleaning
print (table(duplicates_check))

duplicates_check
FALSE
30

Understanding the Duplicate Removal Process

The process of removing duplicates should be approached with care. Ensure that the columns
you choose to check for duplicates are those where duplicates are genuinely undesirable. For
example, it wouldn’t make sense to remove duplicates based solely on age, as multiple athletes
could be of the same age. Instead, focus on columns where uniqueness is expected.

@ Tip

When needing to remove every row with a duplicate value in a specific column (for
instance, ‘participant’ in our ‘cycling data’ dataset), use distinct(participant,
.keep_all = TRUE). This keeps the first occurrence of each unique value in the spec-
ified column.

Managing duplicates is a key aspect of data cleaning, especially in datasets like ours where
the integrity of each entry is crucial. By following these steps, sport and exercise science
practitioners can ensure their data is free from redundancies, paving the way for more accurate
and reliable analyses.

Split By Index

It is common to encounter columns in raw data that combine multiple pieces of information.
This can be problematic for analysis, as ideally, each column should represent a single variable.
We’ll demonstrate how to address this using the str_sub() function from the stringr package
to separate these combined data elements.

Consider our cycling_data dataset, where we have a gender_age column combining gender
and age information. Our goal is to split this data into distinct gender and age columns.

First, we isolate the gender indicator, typically represented as ‘M’ or ‘F’, from the gender_age
column. We achieve this by extracting the first character and creating a new gender column:
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# Extract the first character from 'gender_age' and create a new column 'gender'
# This operation isolates the gender indicator (e.g., 'M' or 'F') from the combined 'gende
cycling_data <- cycling_data 7>%

mutate(gender = str_sub(gender_age, start=1, end=1))

Next, we separate the age portion from the gender_age column. This involves extracting all
characters starting from the second position:

# Extract the remaining characters (starting from the second character) from 'gender_age'
# This operation separates the age portion from the combined 'gender_age' column
cycling_data <- cycling_data %>%

mutate(age = str_sub(gender_age, start=2))

After splitting the data, we remove the original gender_age column to avoid redundancy,
maintaining a tidy dataset:

# Remove the original 'gender_age' column as it's now split into 'gender' and 'age'
# This step cleans the dataset by removing redundant columns
cycling_data <- cycling_data 7>%

select(-gender_age)

Finally, we reorder the columns for a more logical structure, placing gender and age between
participant and heart_rate:

# Reorder columns to place 'gender' and 'age' between 'participant' and 'heart_rate'

cycling_data <- cycling_data 7>%
select(ID, race_date, team, participant, gender, age, everything())

head(cycling_data)

# A tibble: 6 x 9
ID race_date team participant gender age  heart_rate distance_km V02_max

<int> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
1 1 07-06-2023 Vict~ Mary_White <NA> <NA> NA 50 38 mL/~
2 2 15-11-2023 Quee~ Elizabeth_~ F 33 146 66.3 60 mL/~
3 3 11-06-2023 Tasm~ Robert_Smi~ M 18 73 90.6 37 mL/~
4 4 <NA> <NA> Jennifer W~ F 25 123 NA 79 mL/~
5 5 18-07-2023 ACT_~ Mary_Jones F 19 69 88.1 <NA>
6 6 20-02-2023 Quee~ Mary_Smith F 30 67 49.1 51 mL/~
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This approach ensures that each variable is distinctly represented, enhancing both the clarity
and usability of our dataset for further analysis. By employing these techniques, sport and
exercise science professionals can efficiently transform combined data into separate, meaningful
columns, paving the way for more targeted and insightful analysis.

Split By Character

Another common situation in data wrangling arises where a single column contains compound
data elements separated by a specific character. In sport science data, it’s typical to encounter
such scenarios where a column might combine different types of information, like team names
and class categories, separated by a character like an underscore ’_’. We’ll address this using
the separate() function from the tidyr package.

Take, for example, our team column in the cycling_data dataset. This column may contain
values like “ACT_Road” or “NSW__Track”, combining the team’s state and class. Our objec-
tive is to split this data into two separate columns, state_team and class, for more precise
analysis.

We utilize the separate() function, specifying the underscore ’_’ as the separator:

# The 'separate()' function is used to split the 'team' column into two new

# The underscore character is used as the separator
cycling_data <- cycling_data 7>%

separate(team, c('state_team', 'class'), '_', extra = 'merge')

The first argument, ‘team’, is the column we’re splitting. c('state_team', 'class') defines
the names of the new columns to be created. The underscore ° ’ is the character we use to

identify where the split should occur.

The extra = 'merge' parameter ensures that if there’s more than one underscore in the value,
the remaining text after the first underscore is combined into the class column, maintaining
the integrity of our data.

Splitting data by character in this manner is a powerful technique to refine and organize your
dataset, making it more accessible and meaningful for deeper analysis.

Data Types

In data science, and particularly in sports and exercise science, the data type of each column in
a dataset plays a pivotal role in analysis. Common data types in R include character, numeric,
integer, logical, and complex. Properly formatted data types are crucial for effective analysis,
as they determine what operations can be performed on the data.
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Consider our cycling_data tibble. To ensure each column is optimally formatted for analysis,
we first need to understand the current data types of each column. This understanding is
crucial because, for instance, if a numerical category like ‘distance’ is incorrectly stored as
characters, it can hinder the ability to perform numerical analyses.

We use the str() function in R to view the structure and data types of each column in our

dataset:

# Use 'str()' to view the structure of the 'cycling data' tibble
# This function gives an overview of the types of data in each column

str(cycling_data)

tibble [30 x 10] (83: tbl_df/tbl/data.frame)

$ ID : int
$ race_date : chr
$ state_team : chr
$ class : chr
$ participant: chr
$ gender : chr
$ age : chr
$ heart_rate : num
$ distance_km: num

$ V02_max : chr

[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
:30]
[1:

[1

30]
30]
30]
30]
30]
30]
30]
30]

30]

12345678910 ...

"07-06-2023" "15-11-2023" "11-06-2023" NA ...

"Victoria" "Queensland" "Tasmania" NA ...

"Mountain" "Track" "Road" NA ...

"Mary_White" "Elizabeth_White" "Robert_Smith" "Jennifer_White"
NA "F" "M" "F"

NA "33" "18" "25"

NA 146 73 123 69 67 112 126 140 170 ...

50 66.3 90.5 NA 88.1

"38 mL/kg/min" "60 mL/kg/min" "37 mL/kg/min" "79 mL/kg/min"

The str() function displays the internal structure of an R object. For our cycling_data, it
will show the data types of each column, allowing us to identify any columns that might be

misformatted.

Now, let’s consider a practical example where data type matters. We attempt to compute the
mean of the V02_max column:

# Attempt to compute the mean of the V02_max column

# Note: This operation will produce a warning since the column is not numeric
# This issue will be addressed in the next section

cycling_data %>), summarise(mean_V02_max = mean(V02_max))

# A tibble: 1 x 1
mean_V02_max
<dbl>
1 NA
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If VO2_max is not stored as a numeric type, this operation will produce a warning, indicating
that the data cannot be properly processed as numerical values. Such warnings highlight the
importance of verifying and potentially converting data types for accurate calculations.

String Parsing

Converting data into the correct format is crucial for effective analysis. The data we encounter
isn’t always in the most analysis-friendly format, as we’ll see with our cycling_data dataset.

In our cycling_data, the V02_max column contains values suffixed with > mL/kg/min’, mak-
ing them character strings rather than pure numeric values. This format is not suitable for
numerical analysis like calculating averages or other statistical measures. To address this, we
first need to parse these strings to extract the numeric part:

# Remove the non-numeric part (' mL/kg/min') from the V02_max column
# This prepares the column for conversion to a numeric data type
cycling data <- cycling_data %>%

mutate(V02_max = gsub(' mL/kg/min', '', V02_max))

Here, we use gsub (), a powerful function in R for string manipulation, to replace * mL/kg/min’
in each entry with an empty string, effectively removing it. This step transforms the V02_max
column, prepping it for numerical conversion.

Next, we convert the V02_max column to a numeric data type:

# Convert the VO02_max column to a numeric data type
# This allows for numerical operations to be performed on the VO2_max values
cycling_data <- cycling_data 7>%

mutate(V02_max = as.numeric(V02_max))

The as.numeric() function transforms character strings containing numerical values into nu-
meric data types. This conversion is essential for allowing us to perform numerical operations
like calculating means or sums.

Finally, we can accurately compute the mean of the V02_max values:

# Recompute the mean of the V02_max column, excluding NA values for accurate calculation
# The 'ma.rm = TRUE' argument ensures that NA (missing) values are ignored in the mean cal
cycling data %>}, summarise(mean_V02_max = mean(V02_max, na.rm = TRUE))
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# A tibble: 1 x 1
mean_V02_max
<dbl>
1 51.5

This example highlights the importance of string parsing and data type conversion in data
analysis, especially when working with sports data.

Dates Formatting and Ordering

Date formats can be a tricky aspect of data analysis, especially in sports science where temporal
data is crucial. The way dates are formatted can significantly affect how we interpret and
analyze temporal trends. In our cycling_data dataset, the race_date column is initially
in the ‘DD-MM-YYYY’ format. To facilitate analysis, especially when sorting or comparing
dates, we need to standardize these dates into a more uniform format.

# Convert 'race_date' from 'DD-MM-YYYY' format to 'YYYY-MM-DD' format
# This specifies the current format of the dates in your dataset
# and standardizes them to the default 'YYYY-MM-DD' format for consistency and easier anal
cycling_data <- cycling_data 7>%
mutate(race_date = as.Date(race_date, format = "%d-%m-%Y"))

In the above snippet, we use the as.Date () function to convert the race_date column to the
‘“YYYY-MM-DD’ format. This function requires specifying the current format of the dates in
your dataset, which in our case is ‘DD-MM-YYYY’ The conversion brings consistency and
standardizes the dates for easier analysis.

Once the dates are standardized, arranging the data in a particular temporal order becomes
much more straightforward:

# Arrange the data by 'race_date' in descending order
# This helps in analyzing the data from the most recent to the earliest dates
cycling_data <- cycling_data 7>%

arrange(desc(race_date)) %>%

mutate(ID = row_number()) # Update IDs to reflect the new order after arranging dates

head(cycling_data)

# A tibble: 6 x 10
ID race_date state_team class participant gender age  heart_rate
<int> <date> <chr> <chr> <chr> <chr> <chr> <dbl>
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1 1 2023-12-05 Queensland Mountain John_Smith M 39 NA
2 2 2023-12-03 Victoria  Mountain James_Williams M 25 64
3 3 2023-11-26 Victoria Track John _Williams <NA> <NA> 170
4 4 2023-11-18 Tasmania  Mountain Tiffany_Jones F 31 175
5 5 2023-11-15 Queensland Track Elizabeth_White F 33 146
6 6 2023-11-13 ACT Road Jennifer White F 25 100
# i 2 more variables: distance_km <dbl>, V02_max <dbl>

Here, we use arrange (desc(race_date)) to order the dataset by race_date in descending
order. This reordering is beneficial for analyzing data trends from the most recent to the
earliest events. We also update the ID column to reflect the new order after arranging the
dates. This step is particularly valuable when working with time series data.

@ Tip

Alternatively, for ascending order arrangement:

cycling_data <- cycling_data 7>%
arrange (race_date)

Reshape Data From Wide to Long Format
Wide vs Long Data Formats

The structure of your data can significantly influence the ease and effectiveness of your analysis.
Two common data formats are wide and long.

Long Data

Wide Data athlete metric value

Kate_Williams heart_rate 92

athlete heart_rate VO2_max Kate_Williams VO2_max 47
Kate_Williams 2 47 ‘ James_Jones heart_rate 138

James_Jones 138 66 James_Jones VO2_max 66
Tiffany_White 100 55 Tiffany_White heart_rate 100

Tiffany_White VO2_max 55

Figure 1: Comparison of Wide and Long Data Formats: On the left, the wide format with
separate columns for each metric per athlete; on the right, the long format with
consolidated metrics and values for streamlined analysis.
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Wide Data Format is characterized by its “wider” structure, where multiple measurements
(or metrics) for each subject are stored in separate columns. For example, in a wide data
format, an athlete’s heart_rate and VO2_max might be stored in two distinct columns, as
shown in the left side of Fig 1. Each row in this format represents a full set of observations
for one athlete.

Long Data Format, on the other hand, is “taller” and typically involves stacking the mea-
surements vertically. Each row represents a single observation for a subject. As depicted in
the right side of Fig 1, the same data is now arranged such that heart_rate and VO2_ max
are not separate columns but rather fall under a single ‘metric’ column, with their respective
values under the ‘value’ column.

Why Prefer Long Format?

The long format is often more conducive to analysis because it aligns with the principles of
tidy data:

e Each variable forms a column
« Fach observation forms a row

In practice, this format makes filtering, summarizing, and visualizing data for specific mea-
surements more straightforward. It is especially useful for time-series data or repeated mea-
surements across different conditions or time points.

Transitioning from Wide to Long Format

The gather () function from the tidyr package is commonly used to transform data from wide
to long format. It collapses selected columns (like heart_rate, distance_km, and V02_max)
into two new columns: one for the measurement type (key) and one for the values (value).

# Transform the 'cycling data' tibble from wide format to long format.

# The 'gather()' function collapses the 'heart_rate', 'distance_km', and 'V02_max' columns

# into key-value pairs, making the data structure more flexible for analysis.

# The '-variable' notation is used to exclude certain columns from being gathered.
# Including the '-variable' notation is optional and we include it here for completeness.

cycling data <- cycling_data %>%

gather(heart_rate, distance_km, V02_max, key = "measurement", value = "value",

# Arrange the reshaped data by ID and measurement types.

-1ID,

# This ordering helps to organize the data for each participant in a systematic way.

cycling data <- cycling_data %>%
arrange (ID, measurement)
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head(cycling_data)

# A tibble: 6 x 9
ID race_date state_team class participant gender age  measurement value
<int> <date> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
1 1 2023-12-05 Queensland Mounta~ John_Smith M 39 V02_max NA
2 1 2023-12-05 Queensland Mounta~ John_Smith M 39 distance_km 75.8
3 1 2023-12-05 Queensland Mounta~ John_Smith M 39 heart_rate NA
4 2 2023-12-03 Victoria  Mounta~ James_Will~ M 25 V02_max 73
5 2 2023-12-03 Victoria  Mounta~ James Will~ M 25 distance_km 77.9
6 2 2023-12-03 Victoria  Mounta~ James_Will~ M 25 heart_rate 64

By applying gather (), we reshape the dataset so that each row corresponds to a single metric
per athlete, rather than an athlete’s complete profile per row. Post-transformation, we use
arrange () to systematically order the data by ID and measurement type.

Gauging Measurement Distribution

After reshaping the data, it can be insightful to count the occurrences of each measurement
type:

# Count the number of occurrences of each measurement type.

# This helps to understand the distribution of different measurements in the dataset.
measurement_counts <- count(cycling_data, measurement)

print (measurement_counts)

# A tibble: 3 x 2
measurement n
<chr> <int>

1 V02_max 30

2 distance_km 30

3 heart_rate 30

Understanding the distribution of different measurements within the dataset is critical. It
informs us about the data’s granularity and potential areas of focus for in-depth analysis.
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Data Organization in Spreadsheets: Ensuring Readiness for Analysis

Having cleaned and tidied our dataset, it’s imperative to store it correctly to ensure that it
remains accessible and amenable to analysis. As we explored the various techniques of data
wrangling and tidying, our approach adheres to the best practices recommended in the informa-
tive article on Data Organization in Spreadsheets. To preserve the integrity and utility of our
data, we’ve followed principles that promote precision and ease of analysis. These principles
include consistency in data entry, utilizing the unambiguous YYYY-MM-DD format for dates,
avoiding the pitfalls of empty cells, and maintaining the discipline of single pieces of informa-
tion per cell. Our data is organized in a clean rectangle, with each subject’s data captured in
rows, variables in columns, and a single header row to define our dataset’s structure.

When wroking wtih your data, it should also be documented with a data dictionary. It’s
advised to refrain from incorporating calculations within the raw data files and from using font
colors or cell highlighting as data indicators. Proper naming conventions, routine backups, the
application of data validation to circumvent entry mistakes, and saving data in a plain text
format are all part of the structured approach that is recommended to follow. This level of
orderliness in spreadsheet data organization is not only a matter of best practice but also a
cornerstone for efficient and accurate data analysis in future endeavors.

@ Challenge for the Learner

Apply your data wrangling skills to refine and analyze a new dataset:

1. Identify a sports dataset of interest and perform initial data cleaning steps, such
as standardizing column names and handling missing values.

2. Utilize string parsing to extract useful information from complex data entries, and
reshape the dataset from wide to long format.

3. Craft a visualization of the cleaned dataset to reveal an interesting trend or insight,
using the principles of tidy data you’ve learned.

Conclusion and Reflection

In this lesson, we’ve honed the essential skills of data wrangling, cleaning, and tidying, crucial
for insightful sports data analytics. We’ve transformed raw datasets into structured, analysis-
ready formats, crucial for unearthing patterns and driving data-informed decisions.

The journey through R’s tidyverse has not only shown us how to effectively clean and re-
structure data but also underscored the importance of precise data transformation for reliable
analysis. Applying these data refinement techniques to the diverse datasets encountered in
sport and exercise science empowers you to unlock analytical potential. Each step in mastering
these skills paves the way to new insights and advancements.
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Knowledge Spot-Check

@ What is the primary goal of data wrangling in sports data analytics? A)
To create visually appealing reports. B) To ensure data is formatted for easy entry
into spreadsheets. C) To transform and clean data for accurate analysis. D) To learn
programming in R and Python. Expand to see the correct answer.

The correct answer is C) To transform and clean data for accurate analysis.

@ Which R package provides functions for both data wrangling and tidying?
A) ggplot2 B) shiny C) readr D) tidyverse Expand to see the correct answer.

The correct answer is D) tidyverse.

@ When preparing data for analysis, why is it important to standardize col-
umn names? A) To enable merging with other datasets. B) To prevent errors due
to case sensitivity. C) To facilitate sorting of columns alphabetically. D) To make the
dataset visually appealing. Expand to see the correct answer.

The correct answer is B) To prevent errors due to case sensitivity.

@ What does the R function ‘gsub()’ do in the context of data cleaning? A)
Summarizes data statistics. B) Generates subplots for data visualization. C) Replaces
patterns in strings. D) Groups similar data points. Expand to see the correct answer.

The correct answer is C) Replaces patterns in strings.

@ Why is the ‘long’ format often preferred over the ‘wide’ format in data
analysis? A) It is more compact and requires less disk space. B) It typically allows for
more efficient computation. C) It facilitates easier filtering, summarizing, and visualiza-
tion. D) It is the only format supported by modern analytics tools. Expand to see the
correct answer.

The correct answer is C) It facilitates easier filtering, summarizing, and visualization.
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