
Beyond Dynamite Plots: Visualizing Data
Distributions

Box Plots, Violin Plots, and Raincloud Plots in R

This lesson explores effective data visualization techniques using the
HbmassSynth dataset from the speedsR package. Moving beyond the limita-
tions of dynamite plots, we delve into box plots, violin plots, and raincloud plots
to uncover meaningful insights into data distributions. By the end of this lesson,
learners will gain hands-on experience in constructing and interpreting these
visualizations using R.

 Keywords

Data visualization, box plots, violin plots, raincloud plots, R, ggplot2, ggdist, raincloud-
plots, HbmassSynth dataset, sports science, ferritin levels, statistical analysis, SPEEDS
project.

 Lesson’s Level

The level of this lesson is categorized as BRONZE.

 Lesson’s Main Idea

• Understanding the limitations of dynamite plots and transitioning to better alter-
natives.

• Gaining proficiency in creating box plots, violin plots, and raincloud plots in R.
• Leveraging these visualizations to interpret data distributions and enhance data-

driven decision-making.

1

 Dataset Used In This Lesson

In this lesson, we use the HbmassSynth dataset from the speedsR package, an R data
package specifically designed for the SPEEDS project. This package provides a col-
lection of sports-specific datasets, streamlining access for analysis and research in the
sports science context. The HbmassSynth dataset offers valuable insights into the effects
of moderate altitude exposure and iron supplementation on hematological variables in
endurance athletes.

Learning Outcomes

By the end of this lesson, you will have developed the ability to:

• Understand the Limitations of Dynamite Plots: Recognize the shortcomings of
dynamite plots and explain why alternative visualizations are more effective for repre-
senting data distributions.

• Create Box Plots in R: Construct box plots using the ggplot2 package to visualize
medians, quartiles, and outliers in datasets.

• Develop Violin Plots: Build violin plots to represent the full distribution of data and
identify subtle patterns or multimodal distributions.

• Combine Violin and Box Plots: Integrate violin and box plots to present density,
distribution, and summary statistics in a single visualization.

• Design Raincloud Plots: Construct raincloud plots using both the ggdist and
raincloudplots packages to merge density, raw data points, and statistical summaries
effectively.

• Compare Visualization Methods: Evaluate and choose between visualization tech-
niques based on the dataset and analytical goals.

Introduction

In data science and sports science, visualizing data distributions effectively is crucial for draw-
ing meaningful insights. This lesson explores advanced visualization techniques that overcome
the limitations of dynamite plots, emphasizing the use of box plots, violin plots, and rain-
cloud plots. By leveraging these visualizations, you will learn to represent data distributions
comprehensively, showcasing central tendencies, variability, and individual data points.

2

Loading the HbmassSynth Dataset

The HbmassSynth dataset used in this lesson can be loaded from the speedsR package, as
shown below:

Load the speedsR package
library(speedsR)

Access and assign the dataset to a variable
hbmass_data <- HbmassSynth

View the first few rows of the dataset to understand its structure
head(hbmass_data)

A tibble: 6 x 11
ID TIME SEX SUP_DOSE BM FER FE TSAT TRANS AHBM RHBM

<int> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 1 0 97.4 150. 18.7 30 2.6 1265 13.0
2 2 0 1 0 65.7 228. 22.1 43 3.2 904 13.8
3 3 0 0 0 59.2 134. 17.1 36 2.5 649 11.0
4 4 0 1 0 93.2 161. 25 34 2.9 1292 13.9
5 5 0 1 0 93.2 136. 25.1 34 2.6 1292 13.9
6 6 0 0 0 56.8 134. 19.5 23 3.3 660 11.6

This code snippet loads the HbmassSynth dataset and displays its first few rows, providing a
preview of the data’s structure and the types of variables it contains.

Dynamite Plots: Why to Avoid Them

Dynamite plots, also known as bar charts with error bars, are commonly used in scientific
publications to display means and standard errors or standard deviations for groups. However,
they are highly criticized for being uninformative and misleading.

Why dynamite plots should be avoided:

• Lack of Data Representation: Dynamite plots show only the mean and variability,
concealing the actual distribution of the data. This makes it impossible to discern key
features such as:

– Presence of outliers.
– Multimodal distributions.

3

– The number of data points per group.

• Misleading Visual Impact: The height of the bars in dynamite plots creates a false
sense of precision and uniformity. The visual weight of the bars can exaggerate small
differences between means, potentially leading to incorrect interpretations.

• Hiding Sample Size: Dynamite plots do not show how many data points contributed
to the calculation of the mean, making it difficult to assess the reliability of the summary
statistics.

• Better Alternatives Exist: Plots like box plots, violin plots, and raincloud plots can
display much more information, such as the full distribution of the data, median values,
and variability, making them far superior for data visualization.

Example

Using the FER (Ferritin) variable from the HbmassSynth dataset, consider the following dyna-
mite plot, which displays the mean ferritin levels for two groups (e.g., pre-exercise vs. post-
exercise):

Load necessary libraries
library(dplyr) # For data manipulation
library(ggplot2) # For plotting

Set random seed for reproducibility across all plots
set.seed(42)

Filter out NA values from the TIME column
hbmass_data_clean <- hbmass_data %>%

filter(!is.na(TIME))

Convert TIME to a factor and relabel levels
hbmass_data_clean$TIME <- factor(hbmass_data_clean$TIME, labels = c("Pre-exercise", "Post-exercise"))

Calculate mean and standard deviation explicitly
summary_stats <- hbmass_data_clean %>%

group_by(TIME) %>%
summarise(

mean = mean(FER, na.rm = TRUE),
sd = sd(FER, na.rm = TRUE),
.groups = "drop"

)

4

Dynamite plot with error bars
ggplot(summary_stats, aes(x = TIME, y = mean, fill = TIME)) +

geom_errorbar(
aes(ymin = mean - sd, ymax = mean + sd),
width = 0.2,
position = position_dodge(0.6)

) +
geom_bar(stat = "identity", position = "dodge", width = 0.6, alpha = 0.8) +
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

0

30

60

90

120

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

While this plot shows the mean and standard deviation for ferritin levels, it fails to reveal how
the values are distributed within each group. Are the data points evenly spread out? Are

5

there outliers? None of this critical information is visible in a dynamite plot.

Recommendation:

Avoid dynamite plots and instead use visualizations that display the raw data alongside sum-
mary statistics. For example:

• Box plots: Highlight median, quartiles, and potential outliers.
• Violin plots: Show the density of the data distribution.
• Raincloud plots: Combine density, summary statistics, and raw data points.

By using these alternatives, you provide a clearer and more accurate representation of the
data, making it easier for viewers to understand the underlying patterns and variability.

Box Plots: A Fundamental Visualization Tool

In the previous section, we explored the shortcomings of dynamite plots and highlighted their
inability to reveal the full distribution of data. As we transition to box plots, we introduce
a visualization that addresses these limitations by summarizing key distributional statistics
while offering insights into variability and potential outliers.

Why Use Box Plots?

Box plots are excellent for comparing distributions across groups or conditions. They provide
a concise summary of data by visualizing:

• The median, offering a measure of central tendency.
• The interquartile range (IQR), capturing the spread of the middle 50% of the data.
• Whiskers, showing the range within 1.5 times the IQR from Q1 (25th percentile) and

Q3 (75th percentile).
• Outliers, which fall outside the whiskers and may indicate unusual or interesting data

points.

By focusing on these features, box plots are ideal for identifying differences and similarities
between groups, making them invaluable in experimental analysis.

6

Example: Box Plots Without and With Data Points

We will now create box plots using the ferritin (FER) variable from the dataset to compare
pre- and post-exercise distributions. First, we’ll plot the box plot without data points, then
overlay the data points to illustrate individual observations.

Box plot without data points
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = NA) + # Suppress default outlier points
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

Next, we add data points for a more detailed view:

7

Box plot with data points
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

geom_boxplot(width = 0.5, alpha = 0.8, outlier.shape = NA) + # Box plot
geom_jitter(width = 0.2, size = 1, alpha = 0.6, color = "black") + # Add jittered data points
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

Benefits of Adding Data Points

Adding individual data points to a box plot reveals:

• Data density: Clusters of points indicate higher density areas, while gaps suggest sparse
data.

8

• Outliers’ details: The exact position of outliers is shown, providing more context.
• Variation: Highlights the variability within and between groups.

By combining the structure of box plots with the granularity of data points, we obtain a richer
understanding of the data’s distribution and its nuances.

Box plots provide a balance between simplicity and informativeness, making them indispens-
able for summarizing data distributions. The addition of data points enhances their utility,
offering a comprehensive view of the data while maintaining clarity. In the next section, we
will expand on this by introducing violin plots, which go a step further in visualizing data
distributions.

Violin Plots: Visualizing Full Data Distributions

Building on the insights provided by box plots, violin plots offer an additional layer of infor-
mation by displaying the entire data distribution. Violin plots are especially useful for
identifying multimodal distributions or skewed data, which might not be evident in box plots
alone.

Why Use Violin Plots?

Violin plots provide:

• A visualization of the data density across its entire range.
• The ability to highlight distribution shape (e.g., unimodal, bimodal).
• A compact comparison of groups, ideal for datasets with multiple categories.

While violin plots excel at displaying data distribution, they can sometimes obscure summary
statistics (e.g., medians) without additional elements.

Example: Violin Plots Without and With Data Points

Below, we demonstrate violin plots comparing ferritin (FER) levels pre- and post-exercise.
First, we create violin plots without data points, followed by plots that overlay data points for
added clarity.

Violin plot without data points
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

geom_violin(trim = TRUE, alpha = 0.8, width = 0.8) + # Basic violin plot
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

9

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

Adding data points:

Violin plot with data points
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

geom_violin(trim = TRUE, alpha = 0.8, width = 0.8) + # Violin plot
geom_jitter(width = 0.2, size = 1, alpha = 0.6, color = "black") + # Add jittered data points
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

10

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

Advantages of Adding Data Points

Overlaying data points on violin plots provides:

• A clear sense of individual variation within groups.
• Insight into clusters, highlighting patterns or anomalies.
• Enhanced interpretability, particularly for audiences less familiar with density plots.

Combining Violin and Box Plots

To capture both distributional details and statistical summaries, we can combine violin
plots and box plots in a single visualization. This hybrid approach offers:

• The density insight of violin plots.

11

• The key summary statistics (median, IQR, and outliers) of box plots.

Combined violin + box plot with data points
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

geom_violin(trim = TRUE, alpha = 0.8, width = 0.8, color = "black") + # Violin plot
geom_boxplot(width = 0.2, alpha = 0.6, color = "black", outlier.shape = NA) + # Box plot inside violin
geom_jitter(width = 0.2, size = 1, alpha = 0.6, color = "black") + # Add jittered data points
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

12

Key Takeaways

• Violin plots allow for a detailed visualization of data distribution, ideal for detecting
subtle patterns.

• Adding data points provides a bridge between statistical summaries and raw data.
• Combining violin and box plots results in a powerful visualization that balances density,

distribution, and summary statistics. This hybrid approach is particularly suited for
audiences requiring both statistical rigor and interpretive clarity.

Next, we’ll explore raincloud plots, which build on these concepts by incorporating all the
strengths of the aforementioned visualizations in a compact form.

Raincloud Plots: Merging Individual Data Points with Density
Insights

Raincloud plots are a versatile visualization tool that combines the strengths of violin plots,
box plots, and scatter plots in a single visualization. They provide an enriched view of the data
by presenting individual data points, the distribution density, and key summary statistics all at
once. This combination makes raincloud plots particularly effective for showcasing variability,
patterns, and outliers within and across groups.

Advantages of raincloud plots:

• Merge distributional insights (from violin plots) with statistical summaries (from box
plots).

• Include raw data points, offering an intuitive understanding of individual variation.
• Improve interpretability for audiences less familiar with abstract statistical plots.

Example: Creating Raincloud Plots

Below, we demonstrate two methods for creating raincloud plots: one using the ggdist package
and another using the raincloudplots package. Both approaches offer flexibility in achieving
the same visualization, but their implementations differ slightly.

Raincloud Plots with ggdist

The ggdist package provides an intuitive and efficient method for creating raincloud plots. It
uses the stat_halfeye() function to generate the half-violin component, which is combined
with box plots and jittered data points.

13

Load the necessary library for raincloud plots
library(ggdist) # For distributional visualization

Create a raincloud plot
ggplot(hbmass_data_clean, aes(x = TIME, y = FER, fill = TIME)) +

Add half-violin to represent density
ggdist::stat_halfeye(adjust = 0.6, width = 0.8, justification = -0.3, .width = 0, alpha = 0.8) +
Add box plot for statistical summary
geom_boxplot(width = 0.2, alpha = 0.6, outlier.shape = NA, color = "black") +
Add jittered data points for individual observations
geom_jitter(width = 0.2, size = 1, alpha = 0.6, color = "black") +
scale_fill_manual(values = c("#B22222", "#1E90FF")) + # Dark red and dark blue
labs(

x = "Time (Pre/Post Exercise)",
y = "Ferritin (µg/L)",
fill = "Exercise Stage"

) +
theme_minimal() +
theme(

legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()

)

50

100

150

200

Pre−exercise Post−exercise
Time (Pre/Post Exercise)

F
er

rit
in

 (
µg

/L
)

Exercise Stage Pre−exercise Post−exercise

14

Raincloud Plots with raincloudplots

The raincloudplots package is a specialized tool for creating raincloud plots. It provides
dedicated functions for preparing data and visualizing raincloud plots efficiently.

Load the raincloudplots package
library(raincloudplots)

Prepare data using data_1x1
formatted_data <- data_1x1(

array_1 = hbmass_data_clean$FER[hbmass_data_clean$TIME == "Pre-exercise"],
array_2 = hbmass_data_clean$FER[hbmass_data_clean$TIME == "Post-exercise"],
jit_distance = 0.09,
jit_seed = 321

)

raincloud_1x1(
data = formatted_data,
colors = c("#B22222", "#1E90FF"),
fills = c("#B22222", "#1E90FF"),
size = 1,
alpha = 0.6,
ort = "h" # Horizontal orientation

) +
labs(

x = NULL,
y = "Ferritin (µg/L)",
title = "Raincloud Plot for Ferritin Levels",
subtitle = "Comparison between Pre- and Post-Exercise"

) +
scale_x_continuous(

breaks = c(1.5, 2.5), # Position the labels for the groups
labels = c("Pre-Exercise", "Post-Exercise") # Custom group labels

) +
theme_classic() +
theme(

axis.text.y = element_text(size = 9),
axis.ticks.y = element_blank(),
panel.grid = element_blank()

)

15

Pre−Exercise

Post−Exercise

50 100 150 200
Ferritin (µg/L)

Comparison between Pre− and Post−Exercise

Raincloud Plot for Ferritin Levels

Comparison of Methods

Both methods achieve similar visualizations but differ in approach:

ggdist: Integrates directly with ggplot2, providing a flexible and customizable framework.
The stat_halfeye() function simplifies the creation of the half-violin component and is well-
suited for combining with other plot types.

raincloudplots: Designed specifically for raincloud plots, this package streamlines data
preparation and plotting, making it ideal for beginners or those seeking a quick, ready-made
solution.

Conclusion and Reflection

Effective data visualization is critical for understanding data distributions, patterns, and vari-
ability. By exploring and applying box plots, violin plots, and raincloud plots, this lesson has
equipped you with practical tools to represent data comprehensively and accurately. Moving
beyond dynamite plots enables a richer interpretation of data, fostering better decision-making
in research and analysis. Reflect on how these techniques can enhance your ability to commu-
nicate findings and apply them to future projects.

16

Knowledge Spot Check

Question 1

What is a key limitation of dynamite plots?

a) They show only the mean and standard deviation, hiding the full data distribution.
b) They require complex computations for summary statistics.
c) They cannot represent more than two groups.
d) They are difficult to interpret for large datasets.

Solution

a) They show only the mean and standard deviation, hiding the full data distribution.

Dynamite plots fail to reveal critical details like outliers, data density, and multimodal distri-
butions, which can lead to misleading interpretations.

Question 2

What additional insight does overlaying data points on box plots provide?

a) The mean of the dataset.
b) The density of the data within groups.
c) The variability of medians.
d) The maximum and minimum values in the dataset.

Solution

b) The density of the data within groups.

Overlaying data points highlights clusters, sparsity, and individual outliers, providing a clearer
view of the dataset’s variability.

Question 3

What is the primary advantage of violin plots over box plots?

a) Violin plots show the median and quartiles.
b) Violin plots provide a detailed view of the data’s density and shape.
c) Violin plots are easier to construct than box plots.
d) Violin plots exclude outliers to simplify interpretation.

17

Solution

b) Violin plots provide a detailed view of the data’s density and shape.

Violin plots visualize the full distribution of the data, including density and potential multi-
modal patterns, which are not evident in box plots.

Question 4

Which visualization method combines density, raw data points, and statistical summaries?

a) Box plots
b) Violin plots
c) Dynamite plots
d) Raincloud plots

Solution

d) Raincloud plots

Raincloud plots merge the advantages of box plots, violin plots, and scatter plots, offering a
comprehensive view of data variability and density.

Question 5

Which R package provides a streamlined way to create raincloud plots with minimal customiza-
tion?

a) ggplot2
b) ggdist
c) raincloudplots
d) speedsR

Solution

c) raincloudplots

The raincloudplots package is specifically designed for creating raincloud plots, offering dedi-
cated tools for data preparation and visualization.

18

	Learning Outcomes
	Introduction
	Loading the HbmassSynth Dataset
	Dynamite Plots: Why to Avoid Them
	Example
	Recommendation:

	Box Plots: A Fundamental Visualization Tool
	Why Use Box Plots?
	Example: Box Plots Without and With Data Points
	Benefits of Adding Data Points

	Violin Plots: Visualizing Full Data Distributions
	Why Use Violin Plots?
	Example: Violin Plots Without and With Data Points
	Advantages of Adding Data Points

	Combining Violin and Box Plots
	Key Takeaways

	Raincloud Plots: Merging Individual Data Points with Density Insights
	Example: Creating Raincloud Plots
	Raincloud Plots with ggdist
	Raincloud Plots with raincloudplots
	Comparison of Methods

	Conclusion and Reflection
	Knowledge Spot Check
	Question 1
	Solution
	Question 2
	Solution
	Question 3
	Solution
	Question 4
	Solution
	Question 5
	Solution

