
Bar Plots
Unraveling Performance Patterns at the FIFA Women’s World Cup 2023: A Dive

into the Matildas’ Offensive Metrics and Beyond

Numbers offer specificity, but visualizations grant perspective. This lesson under-
scores the vital role of Exploratory Data Visualizations (EDV) within the broader
realm of Exploratory Data Analysis (EDA), using the FIFA Women’s World Cup
2023 data as our canvas. Dive into the versatility of bar plots, one of the key EDV
tools, and grasp how they illuminate intricate facets of team and player perfor-
mance. Tailored for sports and exercise science practitioners, sports analysts, and
those eager to harness the power of sports data.

 Keywords

Exploratory data analysis (EDA), exploratory data visualization (EDV), bar plot,
grouped bar plot, stacked bar plot, ggplot2, football, The Matildas, StatsBomb.

 Lesson’s Level

The level of this lesson is categorized as BRONZE.

 Lesson’s Main Idea

• Exploratory Data Analysis is about asking the right questions and using the appro-
priate visuals to glean insights.

• While numbers give us specifics, visualizations offer us perspective. Use visuals as
a first step to understand your dataset.

Data used in this lesson is provided by

Learning Outcomes

By the end of this lesson, you will be proficient in:
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• Extracting and Preprocessing Sports Data: Efficiently pull, load, and refine
datasets, like the StatsBomb dataset, ensuring they are tailored for specific analyses.

• Understanding the Role of EDV in EDA: Grasping the critical relationship between
Exploratory Data Visualizations (EDV) and Exploratory Data Analysis (EDA), and
recognizing how visuals serve as the foundation of data exploration.

• Constructing Versatile Bar Plots: Crafting intricate bar plot visualizations tailored
for sports data, showcasing metrics such as team and player performance and key offen-
sive contributions.

• Implementing Advanced ggplot2 Techniques: Applying advanced plotting tech-
niques in ggplot2 to enhance and customize your visualizations, including annotations,
segmentations, and logo integrations.

• Interpreting Sports Data Visualizations: Developing the acumen to draw action-
able insights from visual representations of sports data, aiding in performance analysis
and strategic planning.

Introduction: Data Exploration in Sport and Exercise Science

Exploratory Data Analysis

In sport and exercise science (SES), there are numerous ways to generate data. To name a
few, vast arrays of data can be generated during games, training sessions, clinical trials and
so on. Exploratory Data Analysis (EDA) plays a pivotal role in helping uncover rich insights
from data, as well as recognize patterns, anomalies, and the intricate relationships between
variables hidden within the data. EDA is fundamental not only for understanding the current
state of affairs but also for predicting future trends, optimizing training regimes, improving
athletic performance, and much more.

Exploratory Data Visualizations

In sports, diverse datasets abound, from heart rate dynamics and expired gas analysis in
physiology to player performance metrics in football. While numbers give us specifics, visual-
izations offer perspective. At the heart of EDA lies the power of exploratory data visualizations
(EDV). These visual tools simplify complex datasets and make the data speak, allowing us
to interpret patterns, outliers, and relationships within the data. By converting raw numbers
into meaningful insights with the right visualization, an SES practitioner can immediately
discern a standout performer, identify recurring injury patterns, or gauge the effectiveness of
a training module. EDV paves the way for data-driven decisions, providing both context and
a structured approach to understanding data.
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Distributions - The Starting Point of EDA

The journey of data exploration often commences with understanding its distribution. Whether
it is for gauging rehabilitation progress in physiotherapy or analyzing athletic performance
metrics, distributions are foundational. Recognizing patterns, such as the frequency of specific
heart rates or the prevalence of a particular movement pattern in biomechanics, offers foun-
dational insights into the data’s story. While more comprehensive details on various types of
data distributions can be explored in our dedicated lesson, the emphasis of this lesson remains
on EDV.

Bridging the understanding of distributions to visualization tools, in this lesson we focus on bar
plots. These straightforward visuals efficiently reveal important aspects of data distributions,
like centrality and spread, which are especially relevant in sports metrics. As we delve deeper,
our aim is to blend essential EDA concepts with hands-on techniques of crafting bar plots.
This approach provides SES practitioners with a solid foundation and practical tools for their
data exploration journey.

Bar Plots

Distributions form the cornerstone of EDA, and bar plots are indispensable tools that bring
these distributions to life. By rendering numerical data against categorical variables, bar plots
become especially valuable. Whether we are comparing the performance metrics of athletes,
understanding the frequencies of physiological responses, or assessing survey results regarding
athletes’ mental well-being, bar plots emerge as versatile assets.

What Are Bar Plots?

A bar plot represents the relationship between a numerical value and a categorical variable.
Each category is depicted by a rectangular bar, with its length or height proportional to the
value it signifies.

Types of Bar Plots

• Grouped Bar Plot: Perfect for juxtaposing multiple categories side by side, typically to
compare different sub-groups. Imagine comparing metrics like goals, shots, and penalties
across different football teams in a tournament.

• Stacked Bar Plot: Bars are stacked atop each other, summing up the numerical values
for each category. This is particularly useful for visualizing compositional data, such as
a team’s goal breakdown by right foot, left foot, header, and penalty.
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Strengths of Bar Plots

Bar plots are excellent for:

• Showcasing Aggregate Data: Their ability to encapsulate aggregate data ensures an
efficient comparison of categories, emphasizing on central tendencies.

• Quick Evaluation: In performance analysis, bar plots can expedite understanding
player performance or team strategies, answering pivotal questions or shedding light on
crucial patterns.

Making the Most of ggplot2 in Bar Plots

ggplot2 is an integral R-based plotting library that we will utilize throughout this lesson.
What makes ggplot2 stand out is its layering principle. Start with a rudimentary plot, then
add layers of aesthetics and geometry to enrich both its utility and aesthetics. Each layer
embeds more detail or context, crafting the plot progressively. The approach is not only
adaptable, but also instinctive.

Functions for Bar Plots in ggplot2

• geom_bar: Ideal for creating layered bar charts. By default, it counts cases at each level
of a given variable.

• geom_col: Assumes your data is pre-summarized, taking y values to determine bar
heights.

• barplot: A base R function that is less flexible and customizable compared to geom_bar
and geom_col.

 Note

For more intricate multilayered plots, geom_bar and geom_col are preferable due to their
flexibility and compatibility with ggplot2 layers.

 Attention to Bar Plots

• Distinguishing from Histograms: Ensure you do not confuse bar plots with
histograms; they serve different purposes.

• Orientation: Opt for horizontal bars when dealing with lengthy labels to improve
clarity.

• Sorting Bars: Organize your bars in a meaningful order, often by size, for en-
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hanced insights.

Case Study - Offensive Metrics at the FIFA Women’s World Cup
2023

Data visualization tools, such as bar plots, play a crucial role in transforming abstract numbers
into actionable insights. By using these tools, we can gain a deeper understanding of complex
datasets. Drawing from our prior discussion on bar plots, we will now turn our attention to
the football data from the FIFA Women’s World Cup 2023. Our goal is to analyze teams’
offensive metrics such as shots and key passes, giving special attention to the performance of
the Matildas - the Women’s Australian National Football Team. Through this case study, we
aim to showcase the practical application and importance of bar plots in unveiling trends and
patterns within sports data.

What to Expect

• Grouped Bar Plot - “Shot Outcome by Distance”: This visualization presents the
frequency of shot outcomes relative to the distance from the goal. With central tendency
highlighting the most common shot outcome for each distance bin, we can probe: “From
which distance do teams shoot most frequently?” The spread, seen through the variety of
outcomes, further asks: “Which distances yield higher success rates?” and “Are certain
zones more favored for shooting?

• Stacked Bar Plot - “Matildas’ Offensive Prowess”: Through this plot, we will
peek into individual contributions of the Matildas. The central tendency in this context
represents the average shots or key passes per player. This can guide us in determining:
“Which players are the most offensive?”, and “Who takes the most shots or delivers key
passes?”. Furthermore, the spread, highlighted by the variability of shots/key passes
among players, complements the aforementioned insights, offering a deeper understand-
ing of each player’s unique contribution.

Without further ado, let’s delve into the data.

Data Loading and Cleaning

In this lesson, we will utilize open-access data provided by StatsBomb - one of the world’s
leading football analytics companies that provides high-quality football data. We will employ
the StatsBombR package in R, which allows efficient access to the StatsBomb data.
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To ensure a smooth execution of the code in this lesson, follow the steps below to install the
necessary R libraries.

Installing Basic Libraries

Most of the libraries are readily available on CRAN and can be installed using the command
install.packages("NameOfPackage"), if they are not already installed on your computer:

install.packages(c("tidyverse", "ggrepel", "ggsoccer", "RColorBrewer", "grid", "png", "gridExtra", "cowplot", "forcats"), repos="https://cloud.r-project.org/")

Installing From GitHub

Some packages, such as StatsBombR, are not available on CRAN and need to be installed from
GitHub. This can be achieved using the devtools package. If you have not already, please
install devtools:

install.packages("devtools", repos="https://cloud.r-project.org/")

In order to install packages from GitHub, ensure Git is also set up on your machine1. If it is
not installed, download and install Git. This will allow devtools to clone and install packages
from GitHub directly.

Now, the StatsBombR package can be installed using the following command:

devtools::install_github("statsbomb/StatsBombR")

After you have installed all the required packages, you can load them into your current R
session as follows:

1The easiest way to check if Git is installed on your computer is by using the terminal (on macOS or Linux)
or the command prompt (on Windows).

1. macOS and Linux:

1. Open the Terminal.
2. Type git --version and press Return.
3. If you see a version number, it means Git is installed. If you see a message like “command not

found,” then Git is not installed.

2. Windows:

1. Open the Command Prompt.
2. Type git --version and press Enter.
3. If you see a version number, it means Git is installed. If you see a message like ” ‘git’ is not

recognized as an internal or external command”, then Git is not installed.
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rm(list = ls()) # clean the workspace

# Load required libraries
library(StatsBombR) # For accessing and handling StatsBomb football data
library(tidyverse) # For data manipulation and visualization
library(ggrepel) # To avoid label overlap in plots
library(ggsoccer) # For plotting soccer pitches
library(RColorBrewer) # For colorblind-friendly palettes
library(grid) # For lower-level graphics functions
library(png) # To read and write PNG images
library(gridExtra) # For arranging multiple grid-based plots
library(cowplot) # For enhancing and customizing ggplot figures
library(forcats) # For categorical variable (factor) manipulation

Pulling and Organizing StatsBomb Data

 Explore the Code

This lesson features annotated code sections, with comments elucidating the intent and
operation of every code snippet. Nonetheless, to genuinely grasp the influence of a
particular plot customization function, it is advisable to momentarily comment out that
specific code line and see the consequent modifications in the graphic. For RStudio users
on macOS, the keyboard shortcut to comment out a line or multiple lines of code is
Shift-Command-C (mac).

The initial step involves retrieving and loading the StatsBomb dataset, followed by the extrac-
tion of relevant data for this lesson. The code provided below accomplishes this task.

# ---- Load and Tidy Up StatsBomb data ----

#* Pull and load free StatsBomb data ----

# Measure the time it takes to execute the code within the system.time brackets (for performance)
system.time({
# Fetch list of all available competitions
all_comps <- FreeCompetitions()

# Filter to get only the 2023 FIFA Women's World Cup data (Competition ID 72, Season ID 107)
Comp <- all_comps %>%
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filter(competition_id == 72 & season_id == 107)

# Fetch all matches of the selected competition
Matches <- FreeMatches(Comp)

# Download all match events and parallelize to speed up the process
StatsBombData <- free_allevents(MatchesDF = Matches, Parallel = T)

# Clean the data
StatsBombData = allclean(StatsBombData)

})

# Show the column names of the final StatsBombData dataframe
names(StatsBombData)

After loading the data and briefly examining it to acquaint ourselves with the structure of the
StatsBombData dataframe, we can proceed to refine the team names.

#* Tidy up the teams' names ----

# Create a dataframe containing unique names of all teams at FWWC23
WWC_teams <- data.frame(team_name = unique(StatsBombData$team.name))

# Remove the " Women's" part from team names for simplicity
StatsBombData$team.name <- gsub(" Women's", "", StatsBombData$team.name)

# Rename and simplify team names in the 'Matches' dataframe
Matches <- Matches %>%
rename(

home_team = home_team.home_team_name,
away_team = away_team.away_team_name

) %>%
mutate(

home_team = gsub(" Women's", "", home_team),
away_team = gsub(" Women's", "", away_team)

)

With preparations complete, we can now delve into data analysis and craft bar plot visualiza-
tions for our target metrics. We will commence with a grouped bar plot.
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Grouped bar plot

Data Filtering

The code below filters out unnecessary columns from the StatsBombData dataframe and fo-
cuses only on shots that are not penalties. Additionally, it consolidates shot outcomes into
distinct categories: Goal, Off T (Off Target), Saved, Saved to Post, and Post.

# ---- Grouped Bar Plot ----
### Shot Outcome by Distance

#* Filter the data ----

# Select only relevant columns and filter the dataset to include only shots that are not penalties
shot_outcomes <- StatsBombData%>%
select(player.name, team.name, type.name, shot.type.name, shot.outcome.name, DistToGoal)%>%
filter(type.name == "Shot" & (shot.type.name != "Penalty"|is.na(shot.type.name)))%>%
filter(shot.outcome.name %in% c("Goal", "Off T", "Saved", "Saved to Post", "Post"))

Consolidating Shot Outcomes

Specific similar shot outcomes are amalgamated into more general categories to simplify data
interpretation. For instance, “Saved to Post” is reclassified as “Saved”.

# Consolidate similar shot outcomes into broader categories
shot_outcomes <- shot_outcomes %>%
mutate(shot.outcome.name = case_when(

shot.outcome.name == "Saved to Post" ~ "Saved",
shot.outcome.name == "Post" ~ "Off T",
TRUE ~ shot.outcome.name

))

Binning the ‘Shot Distance To Goal’

The code divides the distance to goal (DistToGoal) into bins. It initially determines the
minimum and maximum distances for all shots and then creates bins in 10-meter intervals.

# Calculate min and max distance to goal
min_dist <- min(shot_outcomes$DistToGoal, na.rm = TRUE)
max_dist <- max(shot_outcomes$DistToGoal, na.rm = TRUE)
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# Display min and max distances
cat("Minimal distance of a shot to goal is: ", min_dist, "\n")

Minimal distance of a shot to goal is: 1.860108

cat("Maximal distance of a shot to goal is: ", max_dist, "\n")

Maximal distance of a shot to goal is: 55.34781

# Create bins for DistToGoal
bin_size = 10
shot_outcomes <- shot_outcomes%>%
mutate(DistToGoal_Binned = cut(DistToGoal, breaks = seq(0, max(DistToGoal) + 10, by = 10)))

Creating the Grouped Bar Plot

The code employs ggplot to generate a bar plot with the x-axis denoting binned distances to
goal and the y-axis indicating shot counts. Bars are distinguished by color according to the
shot outcomes.

 Tip

You can view all available colour palettes by calling display.brewer.all() from the
RColorBrewer package.

# Create the bar plot
shot_dist_viz <- ggplot(shot_outcomes) +
geom_bar(aes(x = DistToGoal_Binned, fill = shot.outcome.name), width = 0.7, position = "dodge",

color = "black", size = 0.5) +
scale_y_continuous(

limits = c(0, 210),
breaks = seq(0, 210, by = 50),
expand = expansion(mult = c(0, 0.05)),
position = "left"

) +
scale_x_discrete(expand = expansion(add = c(0, 0)), labels = function(x) gsub("\\((.*),(.*)\\]", "\\1 - \\2", x)) +
theme(
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# Set background color to white
panel.background = element_rect(fill = "white"),
# Set the color and the width of the grid lines
panel.grid.major.y = element_line(color = "#A8BAC480", size = 0.3),
# Remove tick marks by setting their length to 0
axis.ticks.length = unit(0, "mm"),
# Customize the title for both axes
axis.title = element_text(family = "sans", size = 16, color = "black", face = "bold"),
# Only bottom line is painted in black
axis.line.x.bottom = element_line(color = "black"),
# Remove labels from the horizontal axis
axis.text.x = element_text(family = "sans", size = 16, color = "black"),
# Customize labels for the vertical axis
axis.text.y = element_text(family = "sans", size = 16, color = "black"),
legend.title = element_blank(),
legend.text = element_text(family = "sans", size = 16, color = "black"),
legend.position = c(0.9, 0.85)

) +
labs(title = "Shot Outcome by Distance",

subtitle = "Counts of non-penalty shot outcomes binned by distance at FIFA Women's World Cup 2023",
x = "Distance to Goal [m]",
y = "Count of Shots") +

theme(
plot.title = element_text(
family = "sans",
face = "bold",
size = 16,
color = "black"

),
plot.subtitle = element_text(
family = "sans",
size = 16,
color = "black"

)
) +
scale_fill_manual(values=c("#DC2228", "#3371AC", "gold"), labels = c("Goal","Off Target","Saved"))

Adding Count Labels

Upon grouping the data by distance bins and shot outcomes, the code appends each bar with
the corresponding count of shot occurrences.
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# Calculate the count of each shot outcome for each distance bin
shot_outcomes_sum <- shot_outcomes %>%
group_by(DistToGoal_Binned, shot.outcome.name) %>%
summarise(count = n(), .groups = 'drop')

# Add count labels to the bars
shot_dist_viz <- shot_dist_viz +
geom_text(data = shot_outcomes_sum,

aes(x = DistToGoal_Binned, y = count, label = count, group = shot.outcome.name),
vjust = -0.5,
position = position_dodge(width = 0.7),
size = 5.5,
color = "black")

 Note

Using .groups = 'drop' effectively ungroups the data, making the dataframe easier to
manage and the code more explicit.

Adding the StatsBomb Logo

The StatsBomb logo is inserted into the bottom right corner of the plot.

 Warning

To ensure the code below runs smoothly, download the required StatsBomb logo from here
and save it in the same directory as your R script file. In the script, you can then use a rel-
ative path to load the image (e.g., ‘img_path’ for a filename like ‘SB_logo.png’). Remem-
ber, for the relative path to work, the working directory should be set to where the script
is. In R, use getwd() to check the current directory and setwd("/path/to/directory")
to set it.

# Specify the path to the StatsBomb logo
img_path <- "SB_logo.png"

# Add the StatsBomb logo to the plot
shot_dist_viz_sb <- ggdraw(shot_dist_viz) +
draw_image(img_path, x = 0.87, y = 0, width = 0.12, height = 0.06)

shot_dist_viz_sb <- ggdraw(shot_dist_viz_sb) +
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draw_label("Data:", x = 0.84, y = 0.03, size = 16)

# Show the finalized plot with the StatsBomb logo
print(shot_dist_viz_sb)
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The finalized plot is saved as a PNG file.

# ggsave("Shot_Outcome_by_Distance.png", plot = shot_dist_viz_sb, width = 10, height = 8, dpi = 300)

Stacked Bar Plot

In this section, we generate a horizontal stacked bar plot that illustrates the offensive contri-
butions of the Matildas’ players during the FIFA Women’s World Cup 2023. The visualization
highlights two primary metrics for each player: shots per 90 minutes (shots_p90) and key
passes per 90 minutes (key_passes_p90). Combined, these metrics convey the total “value
added in attack” per 90 minutes for every player.

On the plot, each horizontal bar signifies a player. This bar is divided into two segments: one
representing ‘shots_p90’ and the other ‘key_passes_p90’. The extent of each segment mirrors

13



the player’s contributions in the said categories. Numeric labels within these segments further
specify the count of shots or key passes per 90 minutes attributed to the respective player.

Data Filtering

Filter the StatsBomb data to include only shots and passes performed by the Matildas players.
For shots, we are interested in non-penalty attempts with specific outcomes, including goals,
shots that were saved, off-target shots, and shots hitting the post. For passes, our focus is on
those that led directly to a shot or resulted in a goal. In our analysis, we choose to create two
separate dataframes for shots and passes, processing them individually before merging them
later. This method aligns with the data analysis paradigm of ‘split-apply-combine’.

# Select relevant columns and filter the StatsBomb data to only include non-penalty shots taken by the Matildas players. Also, select only the particular types of shots we are interested in.
shots_Matildas <- StatsBombData%>%
select(player.name, player.id, team.name, team.id, type.name, shot.type.name, shot.outcome.name, shot.statsbomb_xg, location.x, location.y, DistToGoal)%>%
filter(team.name == "Australia")%>%
filter(type.name == "Shot" & (shot.type.name != "Penalty"|is.na(shot.type.name)))%>%
filter(shot.outcome.name %in% c("Goal", "Off T", "Saved", "Saved to Post", "Post"))

# Select relevant columns and filter the StatsBomb data to only include passes by the Matildas players that resulted in a shot or a goal.
passes_Matildas <- StatsBombData%>%
select(player.name, player.id, team.name, team.id, type.name, pass.shot_assist, pass.goal_assist)%>%
filter(team.name == "Australia")%>%
filter(pass.shot_assist==TRUE | pass.goal_assist==TRUE)

Extracting Players’ Last Names

Incorporate a new column that captures players’ last names, derived using the extract_last_name
function provided below. This function also accounts for names incorporating “van”. Subse-
quently, adjust the column sequence to position ‘last_name’ immediately after ‘player.name’.

# Function to extract the last name from a full name string
extract_last_name <- function(full_name) {
name_parts <- strsplit(full_name, " ")[[1]]

# Check if the name contains "van"
if ("van" %in% name_parts) {

# Concatenate "van" with the last name
return(paste("van", tail(name_parts, 1), collapse = " "))

} else {
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# Just return the last name
return(tail(name_parts, 1))

}
}

# Add a new column for players' last names
shots_Matildas$last_name <- sapply(shots_Matildas$player.name, extract_last_name)

# Reorder the columns to have last_name appear after player.name
shots_Matildas <- shots_Matildas %>%
select(player.name, last_name, everything())

# Create a new column for players' last names
passes_Matildas$last_name <- sapply(passes_Matildas$player.name, extract_last_name)

# Reorder the columns to have last_name appear after player.name
passes_Matildas <- passes_Matildas %>%
select(player.name, last_name, everything())

Computing Metrics and Normalizing Them to 90 Minutes

First, we organize our data based on individual players, tallying the number of non-penalty
shots each player has taken. Using the total minutes each player has been on the pitch, we
then normalize these shot metrics to 90 minutes of play, a common normalization factor in
football analysis.

Moving on, we calculate the cumulative number of key passes (passes made in the final third of
the football pitch leading to a shot on goal or an actual goal) for each player, again normalized
to 90 minutes. With these metrics in hand, we introduce the ‘value_added_attack_p90’
statistic, representing the total offensive contribution of each player per 90 minutes.

In essence, this series of calculations provides a robust, normalized metric that encapsulates a
player’s offensive potency.

# Calculate stats for each player
# Group by player and count the number of shots they have taken
shots_Matildas_stats <- shots_Matildas%>%
group_by(player.name, player.id, last_name)%>%
summarise(shots=sum(type.name=="Shot", na.rm=TRUE),

.groups = "drop")
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#* Normalize all metrics to 90 minutes ----

# Get the total minutes played by all players
all_players_minutes = get.minutesplayed(StatsBombData)

# Extract Australia's team ID
Australia_team_id <- unique(shots_Matildas$team.id)

# Sum up the total minutes played by each Matilda
Matildas_minutes <- all_players_minutes %>%
filter(team.id == Australia_team_id) %>%
group_by(player.id) %>% # Group data by player.id
summarise(total_minutes_played = round(sum(MinutesPlayed), digits = 2), # Sum up the total minutes played

.groups = "drop")

# Join the minutes data to the shot stats data
shots_Matildas_stats <- shots_Matildas_stats%>%
left_join(Matildas_minutes, by = "player.id")

# Calculate per 90-minute metrics for shots
shots_Matildas_stats <- shots_Matildas_stats%>%
mutate(nineties = round(total_minutes_played/90, digits=2))

shots_Matildas_stats <- shots_Matildas_stats%>%
mutate(shots_p90 = shots/nineties)

# Group by player and calculate total key passes (shot assists + goal assists)
key_passes_Matildas <- passes_Matildas %>%
group_by(player.id, player.name, last_name) %>%
summarise(total_key_passes = sum(pass.shot_assist, na.rm = TRUE) + sum(pass.goal_assist, na.rm = TRUE))

# Merge key_passes_Matildas data with shots_Matildas_stats data - we need this step here to get access to the 'nineties' column in the 'shots_Matildas_stats' dataframe
complete_stats_Matildas <- full_join(shots_Matildas_stats, key_passes_Matildas, by = "player.id")

# Calculate key passes per 90 minutes
complete_stats_Matildas <- complete_stats_Matildas %>%
mutate(key_passes_p90 = total_key_passes / nineties)

# Calculate value added in attack per 90 minutes
complete_stats_Matildas <- complete_stats_Matildas %>%
mutate(value_added_attack_p90 = shots_p90 + key_passes_p90)
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# Handle any NAs by setting them to zero
complete_stats_Matildas <- complete_stats_Matildas %>%
mutate(

shots_p90 = coalesce(shots_p90, 0), # Replace NA with 0 if any
key_passes_p90 = coalesce(key_passes_p90, 0), # Replace NA with 0 if any
value_added_attack_p90 = shots_p90 + key_passes_p90 # Now this should work correctly

)

Converting Data to Long Format

Within the framework of ggplot2, transforming data to the long format involves restructuring
the dataset such that variables and their values form two columns: one representing the variable
names and the other their associated values. Adopting this format proves advantageous for
crafting intricate visualizations, as it facilitates the effortless mapping of variables to aesthetic
features in ggplot2, be it color, shape, or size.

# Convert data to long format for plotting ----
chart_data <- complete_stats_Matildas %>%
ungroup() %>%
select(last_name.x, shots_p90, key_passes_p90, value_added_attack_p90) %>%
arrange(desc(value_added_attack_p90)) %>% # Sorting players by value_added_attack_p90
pivot_longer(c(shots_p90, key_passes_p90), names_to = "variable", values_to = "value")

Creating the Stacked Bar Plot

# Create the ggplot object
attack_viz <- ggplot(chart_data, aes(x = reorder(last_name.x, value), y = value, fill=fct_rev(variable))) +
geom_bar(stat="identity", position = "stack", color = "black", size = 0.5) +
geom_text(aes(label = ifelse(value > 0, round(value, 2), "")), colour = "black", size = 4, hjust = 0.35, position = position_stack(vjust = 0.61)) + # Labels inside bars
coord_flip() +
scale_y_continuous(position = "right",

limits = c(0,6.3),
breaks = seq(0, 6, by = 1),
expand = c(0,0)) +

scale_x_discrete(expand = c(0, 0.7)) +
theme(

# Set background color to white
panel.background = element_rect(fill = "white"),
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# Set the color and the width of the grid lines
panel.grid.major.x = element_line(color = "#A8BAC480", size = 0.3),
# Remove tick marks by setting their length to 0
axis.ticks.length = unit(0, "mm"),
# Customize the title for both axes
axis.title = element_blank(),
# Only left line of the vertical axis is painted in black
axis.line.y.left = element_line(color = "black"),
# Customize labels
axis.text.y = element_text(family = "sans", size = 16, color = "black"),
axis.text.x = element_text(family = "sans", size = 16, color = "black"),
# Customize legend
legend.title = element_blank(),
legend.text = element_text(family = "sans", size = 16, color = "black"),
legend.position = c(0.8, 0.5)

) +
scale_fill_manual(

values = c("shots_p90" = "#f1c40f", "key_passes_p90" = "#1abc9c"),
labels = c("Shots P90", "Key Passes P90")

) +
labs(title = "Matildas' Offensive Prowess",

subtitle = "Shots Per 90 and Key Passes Per 90 at FIFA Women's World Cup 2023") +
theme(

plot.title = element_text(
family = "sans",
face = "bold",
size = 16,
color = "black"

),
plot.subtitle = element_text(
family = "sans",
size = 16,
color = "black"

)
)

Adding the StatsBomb Logo

Insert the StatsBomb logo and save the plot.
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 Warning

To ensure the code below runs smoothly, download the required StatsBomb logo from here
and save it in the same directory as your R script file. In the script, you can then use a rel-
ative path to load the image (e.g., ‘img_path’ for a filename like ‘SB_logo.png’). Remem-
ber, for the relative path to work, the working directory should be set to where the script
is. In R, use getwd() to check the current directory and setwd("/path/to/directory")
to set it.

# Insert the Statsbomb logo ----
img_path <- "SB_logo.png"

attack_viz_sb <- ggdraw(attack_viz) +
draw_image(img_path, x = 0.8, y = 0, width = 0.13, height = 0.065)

attack_viz_sb <- ggdraw(attack_viz_sb) +
draw_label("Data:", x = 0.77, y = 0.033, size = 16)

# Show the final plot
print(attack_viz_sb)
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Data:

#* Save the visualization to png ----

# ggsave("Matildas_Offensive_Prowess.png", plot = attack_viz_sb, width = 10, height = 8, dpi = 300)

 Challenge for the Learner

Deepen your grasp of bar plots and the FIFA Women’s World Cup 2023 data by:

1. Creating a grouped bar plot specifically for the Matildas players.
2. Generating a stacked bar plot that includes players from all teams, but only those

who played more than 2 “nineties”.

Conclusion and Reflection

Sports data, be it performance metrics or physiological readings, share universal principles.
The application of Exploratory Data Analysis (EDA) is the foundational step when working
with data of any type and origin. Exploratory Data Visualizations (EDV) serve as a backbone
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of EDA, regardless of the specific sport or exercise science discipline. Visualizing data, whether
in performance analysis or physiology, follows consistent principles — it is all about asking
pertinent questions and using suitable visuals for answers. As demonstrated with the football
data from the FIFA Women’s World Cup 2023 in this lesson, visual tools like bar plots are
versatile. Applied to sports data, they can illustrate player performance as effectively as they
depict average heart rates across different exercise regimes. Understanding such aggregates,
whether it is discerning the frequency of key passes or assessing average heart rates, lays the
groundwork for subsequent analyses and modeling.

The journey of EDA is sequential: after recognizing patterns and distributions, the focus
shifts to deciphering relationships between variables and underlying patterns. This progression
underpins the broader scope of EDA — commencing with understanding distributions and
culminating in predicting outcomes, enhancing strategies, and fortifying performance. To
learn about more EDA and EDV tools, please explore further lessons on our portal.

Knowledge Spot-Check

 Why is exploratory data visualization crucial for data analysis? A) It makes
data colorful. B) It offers an easy way to detect errors in data. C) It simplifies complex
statistical measures into understandable visuals. D) It’s an alternative to traditional
statistics. Expand the see the correct answer.

The correct answer is C) It simplifies complex statistical measures into understandable
visuals.

 How can bar plots provide insights into your data? A) They represent the
frequency of categorical data. B) They show the relationship between two numerical
variables. C) They visualize time series data trends. D) They highlight the hierarchical
structure of data. Expand the see the correct answer.

The correct answer is A) They represent the frequency of categorical data.

 In the context of the lesson, what purpose do bar plots serve? A) Display
relationships between two continuous variables. B) Display the distribution of a single
categorical variable. C) Compare the values of different groups. D) Showcase time series
data. Expand the see the correct answer.

The correct answer is C) Compare the values of different groups.
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 What data format is the most suitable for a stacked bar plot visualization?
A) A wide format with columns representing categories. B) A long format where one
column specifies the categories and another column provides the values. C) Data with
only numerical variables. D) Data with only one categorical variable. Expand the see
the correct answer.

The correct answer is B) A long format where one column specifies the categories and
another column provides the values.

 How do you implement customization of ggplot objects? A) By directly editing
the original data. B) By using the theme() function and other scale functions. C) By using
external software to modify the visualization after export. D) By using the coord_flip()
function. Expand the see the correct answer.

The correct answer is B) By using the theme() function and other scale functions.
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